HPCC2025/GA/main.py

124 lines
4.3 KiB
Python
Raw Permalink Normal View History

2025-03-22 17:16:58 +08:00
import random
import math
import yaml
import numpy as np
from utils import if_valid_partition, GA_solver
2025-04-03 17:24:54 +08:00
from itertools import product, combinations
2025-03-22 17:16:58 +08:00
import json
from tqdm import tqdm
np.random.seed(42)
random.seed(42)
best_T = float('inf')
best_solution = None
best_row_boundaries = None
best_col_boundaries = None
2025-03-24 17:09:51 +08:00
# ---------------------------
# 需要修改的超参数
# ---------------------------
2025-04-03 17:24:54 +08:00
R = 10
C = 10
params_file = 'params_100_100_5'
2025-03-24 17:09:51 +08:00
2025-03-22 21:44:06 +08:00
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
2025-03-22 17:16:58 +08:00
params = yaml.safe_load(file)
H = params['H']
W = params['W']
k = params['num_cars']
flight_time_factor = params['flight_time_factor']
comp_time_factor = params['comp_time_factor']
trans_time_factor = params['trans_time_factor']
car_time_factor = params['car_time_factor']
bs_time_factor = params['bs_time_factor']
flight_energy_factor = params['flight_energy_factor']
comp_energy_factor = params['comp_energy_factor']
trans_energy_factor = params['trans_energy_factor']
battery_energy_capacity = params['battery_energy_capacity']
2025-04-03 17:24:54 +08:00
# # 定义数字列表
# numbers = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
2025-03-22 17:16:58 +08:00
2025-04-03 17:24:54 +08:00
# # 生成所有的排列情况取三次每次都可以从10个数中选
# row_product = list(product(numbers, repeat=R))
# # 对每种情况从小到大排序,并剔除重复的情况
# row_cuts_set = set(
# tuple(sorted(set(item for item in prod if item > 0))) for prod in row_product)
# row_cuts_set = sorted(row_cuts_set)
2025-03-22 17:16:58 +08:00
2025-04-03 17:24:54 +08:00
# col_product = list(product(numbers, repeat=C))
# col_cuts_set = set(
# tuple(sorted(set(item for item in prod if item > 0))) for prod in col_product)
# col_cuts_set = sorted(col_cuts_set)
numbers = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
row_cuts_set = []
for i in range(R):
row_cuts_set += list(combinations(numbers, i+1))
col_cuts_set = []
for i in range(C):
col_cuts_set += list(combinations(numbers, i+1))
2025-03-22 17:16:58 +08:00
total_iterations = len(row_cuts_set) * len(col_cuts_set)
with tqdm(total=total_iterations, desc="Processing") as pbar:
for row_cuts in row_cuts_set:
for col_cuts in col_cuts_set:
row_boundaries = [0.0] + list(row_cuts) + [1.0]
col_boundaries = [0.0] + list(col_cuts) + [1.0]
# 这里面的距离不再是比例,而是真实距离!
2025-03-22 21:43:11 +08:00
rectrangles = if_valid_partition(
row_boundaries, col_boundaries, params)
2025-03-22 17:16:58 +08:00
if not rectrangles:
pbar.update(1)
continue
else:
# 使用遗传算法求出每一种网格划分的可行解,然后选择其中的最优解
2025-03-22 21:43:11 +08:00
current_solution, current_time, to_process_idx = GA_solver(
rectrangles, params)
2025-03-22 17:16:58 +08:00
if current_time < best_T:
best_T = current_time
best_solution = current_solution
best_row_boundaries = row_boundaries
best_col_boundaries = col_boundaries
# 将best_solution分解成每个车队的路径
found_start_points_indices = []
for i in range(len(best_solution)):
if best_solution[i] in to_process_idx:
found_start_points_indices.append(i)
car_paths = []
for j in range(len(found_start_points_indices) - 1):
from_index = found_start_points_indices[j]
end_index = found_start_points_indices[j + 1]
car_path = []
for k in range(from_index, end_index + 1):
rectrangle_idx = best_solution[k]
2025-03-22 17:24:45 +08:00
if rectrangle_idx not in to_process_idx:
2025-03-24 15:42:42 +08:00
car_path.append(rectrangle_idx - 1)
2025-03-22 21:43:11 +08:00
if car_path:
car_paths.append(car_path)
2025-03-22 17:16:58 +08:00
pbar.update(1)
# 输出最佳方案
print("Best solution:", best_solution)
print("Time:", best_T)
print("Row boundaries:", best_row_boundaries)
print("Col boundaries:", best_col_boundaries)
2025-03-24 17:09:51 +08:00
print("Car Paths:", car_paths)
2025-03-22 17:16:58 +08:00
output_data = {
2025-03-22 21:43:11 +08:00
'row_boundaries': best_row_boundaries,
'col_boundaries': best_col_boundaries,
2025-03-22 17:16:58 +08:00
'car_paths': car_paths
}
2025-03-22 21:43:11 +08:00
with open(f'./solutions/trav_ga_{params_file}.json', 'w', encoding='utf-8') as file:
json.dump(output_data, file, ensure_ascii=False, indent=4)