HPCC2025/GA/ga.py

368 lines
13 KiB
Python
Raw Normal View History

import math
import random
2025-03-29 11:43:04 +08:00
# import matplotlib.pyplot as plt
import numpy as np
class GA(object):
def __init__(self, num_drones, num_city, num_total, data, to_process_idx, rectangles):
self.num_drones = num_drones
self.num_city = num_city
self.num_total = num_total
self.scores = []
# self.iteration = iteration
self.location = data
self.to_process_idx = to_process_idx
self.rectangles = rectangles
2025-03-29 11:43:04 +08:00
self.epochs = 500
self.ga_choose_ratio = 0.2
self.mutate_ratio = 0.05
# fruits中存每一个个体是下标的list
self.dis_mat = self.compute_dis_mat(num_city, data)
# self.fruits = self.greedy_init(self.dis_mat, num_total, num_city)
self.fruits = self.random_init(num_total, num_city)
# 显示初始化后的最佳路径
scores = self.compute_adp(self.fruits)
sort_index = np.argsort(-scores)
init_best = self.fruits[sort_index[0]]
init_best = self.location[init_best]
# 存储每个iteration的结果画出收敛图
self.iter_x = [0]
self.iter_y = [1.0 / scores[sort_index[0]]]
def random_init(self, num_total, num_city):
tmp = [x for x in range(num_city)]
result = []
for i in range(num_total):
random.shuffle(tmp)
result.append(tmp.copy())
# print("Lens:", len(result), len(result[0]))
return result
def greedy_init(self, dis_mat, num_total, num_city):
start_index = 0
result = []
for i in range(num_total):
rest = [x for x in range(0, num_city)]
# 所有起始点都已经生成了
if start_index >= num_city:
start_index = np.random.randint(0, num_city)
result.append(result[start_index].copy())
continue
current = start_index
rest.remove(current)
# 找到一条最近邻路径
result_one = [current]
while len(rest) != 0:
tmp_min = math.inf
tmp_choose = -1
for x in rest:
# print("---", current, x, dis_mat[current][x])
if dis_mat[current][x] < tmp_min:
tmp_min = dis_mat[current][x]
tmp_choose = x
if tmp_choose == -1: # 此种情况仅可能发生在剩的都是基地点
tmp_choose = rest[0]
# print("tmp_choose:", tmp_choose)
current = tmp_choose
result_one.append(tmp_choose)
# print(current, rest)
rest.remove(tmp_choose)
# print(rest)
result.append(result_one)
start_index += 1
# print(len(result), len(result[0]))
return result
# 计算不同城市之间的距离
def compute_dis_mat(self, num_city, location):
dis_mat = np.zeros((num_city, num_city))
for i in range(num_city):
for j in range(num_city):
if i == j:
dis_mat[i][j] = np.inf
continue
a = location[i]
b = location[j]
tmp = np.sqrt(sum([(x[0] - x[1]) ** 2 for x in zip(a, b)]))
dis_mat[i][j] = tmp
for i in self.to_process_idx:
for j in self.to_process_idx:
# print("processing:", i, j, dis_mat[i][j])
dis_mat[i][j] = np.inf
return dis_mat
# 计算路径长度
def compute_pathlen(self, tmp_path, dis_mat):
path = tmp_path.copy()
if path[0] not in self.to_process_idx:
path.insert(0, 0)
if path[-1] not in self.to_process_idx:
path.append(0)
try:
a = path[0]
b = path[-1]
except:
import pdb
pdb.set_trace()
car_infos = []
# 计算各系统的任务分配
found_start_points_indices = []
for i in range(len(path)):
if path[i] in self.to_process_idx:
found_start_points_indices.append(i)
car_paths = []
for j in range(len(found_start_points_indices) - 1):
from_index = found_start_points_indices[j]
end_index = found_start_points_indices[j + 1]
car_path = []
for k in range(from_index, end_index + 1):
car_path.append(path[k])
car_paths.append(car_path)
2025-03-22 21:43:11 +08:00
# 计算各系统的车辆移动距离
for car_path in car_paths:
car_time = 0
for i in range(len(car_path) - 1):
a = car_path[i]
b = car_path[i + 1]
if a in self.to_process_idx and b in self.to_process_idx:
car_time += 0
else:
2025-03-22 21:43:11 +08:00
car_time += dis_mat[a][b] * 100 # TODO 这里要换成对应参数
car_move_info = {'car_path': car_path, 'car_time': car_time}
car_infos.append(car_move_info)
sorted_car_infos = sorted(car_infos, key=lambda x: x['car_time'])
# 处理任务分配为num_drones + 1的情况合并列表前两个元素
if len(car_paths) == self.num_drones + 1:
first = sorted_car_infos[0]
second = sorted_car_infos[1]
merged_path = first['car_path'] + second['car_path']
merged_time = first['car_time'] + second['car_time']
merged_dict = {'car_path': merged_path, 'car_time': merged_time}
2025-03-24 15:42:42 +08:00
sorted_car_infos = [merged_dict] + sorted_car_infos[2:]
# 计算各系统的总时间max(飞行时间+车的时间, 机巢计算时间)
T_k_list = []
for car_info in sorted_car_infos:
flight_time = 0
bs_time = 0
for point in car_info['car_path']:
if point in self.to_process_idx:
continue
else:
2025-03-22 21:43:11 +08:00
# 注意,这里要减一!!!
flight_time += self.rectangles[point - 1]['flight_time']
2025-03-22 17:16:58 +08:00
bs_time += self.rectangles[point - 1]['bs_time']
system_time = max(flight_time + car_info['car_time'], bs_time)
T_k_list.append(system_time)
T_max = max(T_k_list)
2025-03-22 21:43:11 +08:00
return T_max
# 计算种群适应度
def compute_adp(self, fruits):
adp = []
for fruit in fruits:
if isinstance(fruit, int):
import pdb
pdb.set_trace()
length = self.compute_pathlen(fruit, self.dis_mat)
adp.append(1.0 / length)
return np.array(adp)
def swap_part(self, list1, list2):
index = len(list1)
list = list1 + list2
list = list[::-1]
return list[:index], list[index:]
def ga_cross(self, x, y):
len_ = len(x)
assert len(x) == len(y)
path_list = [t for t in range(len_)]
order = list(random.sample(path_list, 2))
order.sort()
start, end = order
# 找到冲突点并存下他们的下标,x中存储的是y中的下标,y中存储x与它冲突的下标
tmp = x[start:end]
x_conflict_index = []
for sub in tmp:
index = y.index(sub)
if not (index >= start and index < end):
x_conflict_index.append(index)
y_confict_index = []
tmp = y[start:end]
for sub in tmp:
index = x.index(sub)
if not (index >= start and index < end):
y_confict_index.append(index)
assert len(x_conflict_index) == len(y_confict_index)
# 交叉
tmp = x[start:end].copy()
x[start:end] = y[start:end]
y[start:end] = tmp
# 解决冲突
for index in range(len(x_conflict_index)):
i = x_conflict_index[index]
j = y_confict_index[index]
y[i], x[j] = x[j], y[i]
assert len(set(x)) == len_ and len(set(y)) == len_
return list(x), list(y)
def ga_parent(self, scores, ga_choose_ratio):
sort_index = np.argsort(-scores).copy()
2025-03-22 21:43:11 +08:00
sort_index = sort_index[0: int(ga_choose_ratio * len(sort_index))]
parents = []
parents_score = []
for index in sort_index:
parents.append(self.fruits[index])
parents_score.append(scores[index])
return parents, parents_score
def ga_choose(self, genes_score, genes_choose):
sum_score = sum(genes_score)
score_ratio = [sub * 1.0 / sum_score for sub in genes_score]
rand1 = np.random.rand()
rand2 = np.random.rand()
index1, index2 = 0, 0
for i, sub in enumerate(score_ratio):
if rand1 >= 0:
rand1 -= sub
if rand1 < 0:
index1 = i
if rand2 >= 0:
rand2 -= sub
if rand2 < 0:
index2 = i
if rand1 < 0 and rand2 < 0:
break
return list(genes_choose[index1]), list(genes_choose[index2])
def ga_mutate(self, gene):
path_list = [t for t in range(len(gene))]
order = list(random.sample(path_list, 2))
start, end = min(order), max(order)
tmp = gene[start:end]
# np.random.shuffle(tmp)
tmp = tmp[::-1]
gene[start:end] = tmp
return list(gene)
def ga(self):
# 获得优质父代
scores = self.compute_adp(self.fruits)
# 选择部分优秀个体作为父代候选集合
parents, parents_score = self.ga_parent(scores, self.ga_choose_ratio)
tmp_best_one = parents[0]
tmp_best_score = parents_score[0]
# 新的种群fruits
fruits = parents.copy()
# 生成新的种群
while len(fruits) < self.num_total:
# 轮盘赌方式对父代进行选择
gene_x, gene_y = self.ga_choose(parents_score, parents)
# 交叉
gene_x_new, gene_y_new = self.ga_cross(gene_x, gene_y)
# 变异
if np.random.rand() < self.mutate_ratio:
gene_x_new = self.ga_mutate(gene_x_new)
if np.random.rand() < self.mutate_ratio:
gene_y_new = self.ga_mutate(gene_y_new)
x_adp = 1.0 / self.compute_pathlen(gene_x_new, self.dis_mat)
y_adp = 1.0 / self.compute_pathlen(gene_y_new, self.dis_mat)
# 将适应度高的放入种群中
if x_adp > y_adp and (not gene_x_new in fruits):
fruits.append(gene_x_new)
elif x_adp <= y_adp and (not gene_y_new in fruits):
fruits.append(gene_y_new)
self.fruits = fruits
return tmp_best_one, tmp_best_score
def run(self):
BEST_LIST = None
best_score = -math.inf
self.best_record = []
early_stop_cnt = 0
for i in range(self.epochs):
tmp_best_one, tmp_best_score = self.ga()
self.iter_x.append(i)
self.iter_y.append(1.0 / tmp_best_score)
if tmp_best_score > best_score:
best_score = tmp_best_score
BEST_LIST = tmp_best_one
early_stop_cnt = 0
else:
early_stop_cnt += 1
if early_stop_cnt == 50: # 若连续50次没有性能提升则早停
break
self.best_record.append(1.0 / best_score)
best_length = 1.0 / best_score
# print(f"Epoch {i:3}: {best_length:.3f}")
# print(1.0 / best_score)
return tmp_best_one, 1.0 / best_score
2025-03-22 21:43:11 +08:00
# if __name__ == '__main__':
# seed = 42
# num_drones = 6
# num_city = 12
# epochs = 3000
# # 固定随机数
# np.random.seed(seed)
# random.seed(seed)
# ## 初始化坐标 (第一个点是基地的起点,起点的坐标是 0,0 )
# data = [[0, 0]]
# for i in range(num_city - 1):
# while True:
# x = np.random.randint(-250, 250)
# y = np.random.randint(-250, 250)
# if x != 0 or y != 0:
# break
# data.append([x, y])
# data = np.array(data)
# # 关键有N架无人机则再增加N-1个`点` (坐标是起始点)这些点之间的距离是inf
# for d in range(num_drones - 1):
# data = np.vstack([data, data[0]])
# num_city += 1 # 增加欺骗城市
# to_process_idx = [0]
# # print("start point:", location[0])
# for d in range(1, num_drones): # 1, ... drone-1
# # print("added base point:", location[num_city - d])
# to_process_idx.append(num_city - d)
# model = GA(num_city=data.shape[0], num_total=20, data=data.copy())
# Best_path, Best = model.run()
# print(Best_path)
# iterations = model.iter_x
# best_record = model.iter_y
# # print(Best_path)
# print(f"Best Path Length: {Best:.3f}")
# plot_util.plot_results(Best_path, iterations, best_record)