HPCC2025/DQN/RL_brain.py

255 lines
5.3 KiB
Python
Raw Normal View History

2025-03-18 17:27:49 +08:00
"""
Deep Q Network off-policy
"""
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
np.random.seed(42)
torch.manual_seed(2)
class Network(nn.Module):
"""
Network Structure
"""
def __init__(self,
n_features,
n_actions,
n_neuron=10
):
super(Network, self).__init__()
self.net = nn.Sequential(
nn.Linear(in_features=n_features, out_features=n_neuron, bias=True),
nn.Linear(in_features=n_neuron, out_features=n_actions, bias=True),
nn.ReLU()
)
def forward(self, s):
"""
:param s: s
:return: q
"""
q = self.net(s)
return q
class DeepQNetwork(nn.Module):
"""
Q Learning Algorithm
"""
def __init__(self,
n_actions,
n_features,
learning_rate=0.01,
reward_decay=0.9,
e_greedy=0.9,
replace_target_iter=300,
memory_size=500,
batch_size=32,
e_greedy_increment=None):
super(DeepQNetwork, self).__init__()
self.n_actions = n_actions
self.n_features = n_features
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.replace_target_iter = replace_target_iter
self.memory_size = memory_size
self.batch_size = batch_size
self.epsilon_increment = e_greedy_increment
self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
# total learning step
self.learn_step_counter = 0
# initialize zero memory [s, a, r, s_]
# 这里用pd.DataFrame创建的表格作为memory
# 表格的行数是memory的大小也就是transition的个数
# 表格的列数是transition的长度一个transition包含[s, a, r, s_]其中a和r分别是一个数字s和s_的长度分别是n_features
self.memory = pd.DataFrame(np.zeros((self.memory_size, self.n_features*2+2)))
# build two network: eval_net and target_net
self.eval_net = Network(n_features=self.n_features, n_actions=self.n_actions)
self.target_net = Network(n_features=self.n_features, n_actions=self.n_actions)
self.loss_function = nn.MSELoss()
self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=self.lr)
# 记录每一步的误差
self.cost_his = []
def store_transition(self, s, a, r, s_):
if not hasattr(self, 'memory_counter'):
# hasattr用于判断对象是否包含对应的属性。
self.memory_counter = 0
transition = np.hstack((s, [a,r], s_))
# replace the old memory with new memory
index = self.memory_counter % self.memory_size
self.memory.iloc[index, :] = transition
self.memory_counter += 1
def choose_action(self, observation):
observation = observation[np.newaxis, :]
if np.random.uniform() < self.epsilon:
# forward feed the observation and get q value for every actions
s = torch.FloatTensor(observation)
actions_value = self.eval_net(s)
action = [np.argmax(actions_value.detach().numpy())][0]
else:
action = np.random.randint(0, self.n_actions)
return action
def _replace_target_params(self):
# 复制网络参数
self.target_net.load_state_dict(self.eval_net.state_dict())
def learn(self):
# check to replace target parameters
if self.learn_step_counter % self.replace_target_iter == 0:
self._replace_target_params()
print('\ntarget params replaced\n')
# sample batch memory from all memory
batch_memory = self.memory.sample(self.batch_size) \
if self.memory_counter > self.memory_size \
else self.memory.iloc[:self.memory_counter].sample(self.batch_size, replace=True)
# run the nextwork
s = torch.FloatTensor(batch_memory.iloc[:, :self.n_features].values)
s_ = torch.FloatTensor(batch_memory.iloc[:, -self.n_features:].values)
q_eval = self.eval_net(s)
q_next = self.target_net(s_)
# change q_target w.r.t q_eval's action
q_target = q_eval.clone()
# 更新值
batch_index = np.arange(self.batch_size, dtype=np.int32)
eval_act_index = batch_memory.iloc[:, self.n_features].values.astype(int)
reward = batch_memory.iloc[:, self.n_features + 1].values
q_target[batch_index, eval_act_index] = torch.FloatTensor(reward) + self.gamma * q_next.max(dim=1).values
# train eval network
loss = self.loss_function(q_target, q_eval)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.cost_his.append(loss.detach().numpy())
# increasing epsilon
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
self.learn_step_counter += 1
def plot_cost(self):
plt.figure()
plt.plot(np.arange(len(self.cost_his)), self.cost_his)
plt.show()