HPCC2025/env_partion_dist.py

233 lines
8.6 KiB
Python
Raw Normal View History

2025-03-29 21:28:39 +08:00
import gymnasium as gym
from gymnasium import spaces
import numpy as np
import yaml
import math
from mTSP_solver import mTSP
from GA.ga import GA
class PartitionEnv(gym.Env):
"""
自定义环境分为两阶段
区域切分每一次切分都是(0, 1)之间的连续值
"""
def __init__(self, config=None):
super(PartitionEnv, self).__init__()
##############################
# 可能需要手动修改的超参数
##############################
self.params = 'params2'
self.ORI_ROW_CUTS = [0, 0.2, 0.4, 0.7, 1]
self.ORI_COL_CUTS = [0, 0.5, 1]
self.CUT_NUM = 4
self.BASE_LINE = 9100
self.MAX_ADJUST_STEP = 50
self.ADJUST_THRESHOLD = 0.1
# self.mTSP_STEPS = 10000
# 切分位置+/-0.01
self.action_space = spaces.Discrete(self.CUT_NUM*2 + 1)
# 定义观察空间为8维向量
self.observation_space = spaces.Box(
low=0.0, high=1.0, shape=(self.CUT_NUM + 4,), dtype=np.float32)
self.row_cuts = self.ORI_ROW_CUTS[:]
self.col_cuts = self.ORI_COL_CUTS[:]
self.rectangles = []
self.adjust_step = 0
# 车队参数设置
with open(self.params + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)
self.H = params['H']
self.W = params['W']
self.center = (self.H/2, self.W/2)
self.num_cars = params['num_cars']
self.flight_time_factor = params['flight_time_factor']
self.comp_time_factor = params['comp_time_factor']
self.trans_time_factor = params['trans_time_factor']
self.car_time_factor = params['car_time_factor']
self.bs_time_factor = params['bs_time_factor']
self.flight_energy_factor = params['flight_energy_factor']
self.comp_energy_factor = params['comp_energy_factor']
self.trans_energy_factor = params['trans_energy_factor']
self.battery_energy_capacity = params['battery_energy_capacity']
def reset(self, seed=None, options=None):
# 重置所有变量回到切分阶段phase 0
self.row_cuts = self.ORI_ROW_CUTS[:]
self.col_cuts = self.ORI_COL_CUTS[:]
self.rectangles = []
self.adjust_step = 0
# 状态:前 4 维为 partition_values其余为区域访问状态初始全0
state = np.array(self.row_cuts + self.col_cuts)
return state
def step(self, action):
if action == 1:
self.row_cuts[1] += 0.01
elif action == 2:
self.row_cuts[1] -= 0.01
elif action == 3:
self.row_cuts[2] += 0.01
elif action == 4:
self.row_cuts[2] -= 0.01
elif action == 5:
self.row_cuts[3] += 0.01
elif action == 6:
self.row_cuts[3] -= 0.01
elif action == 7:
self.col_cuts[1] += 0.01
elif action == 8:
self.col_cuts[1] -= 0.01
elif action == 9:
pass
self.adjust_step += 1
state = np.array(self.row_cuts + self.col_cuts)
if self.row_cuts[0] < self.row_cuts[1] < self.row_cuts[2] < self.row_cuts[3] < self.row_cuts[4] and self.col_cuts[0] < self.col_cuts[1] < self.col_cuts[2]:
# 调整合法,验证分区情况是否满足条件
rectangles = self.if_valid_partition()
if not rectangles:
# 不满足条件,结束
reward = -10000
return state, reward, True, False, {}
else:
# 满足条件,继续进行路径规划
# 每隔10步计算一次路径第一次也需要计算路径记录最佳路径
if self.adjust_step % 10 == 0 or self.adjust_step == 1:
best_time, self.best_path = self.ga_solver(rectangles)
else:
# 根据最佳路径计算当前时间
best_time = self.get_best_time(self.best_path, rectangles)
reward = self.BASE_LINE - best_time
if self.adjust_step < self.MAX_ADJUST_STEP:
done = False
else:
done = True
return state, reward, done, False, self.best_path
else:
# 调整不合法,结束
return state, -10, True, False, {}
def if_valid_partition(self):
rectangles = []
for i in range(len(self.row_cuts) - 1):
for j in range(len(self.col_cuts) - 1):
d = (self.col_cuts[j+1] - self.col_cuts[j]) * self.W * \
(self.row_cuts[i+1] -
self.row_cuts[i]) * self.H
rho_time_limit = (self.flight_time_factor - self.trans_time_factor) / \
(self.comp_time_factor - self.trans_time_factor)
rho_energy_limit = (self.battery_energy_capacity - self.flight_energy_factor * d - self.trans_energy_factor * d) / \
(self.comp_energy_factor * d -
self.trans_energy_factor * d)
if rho_energy_limit < 0:
return []
rho = min(rho_time_limit, rho_energy_limit)
flight_time = self.flight_time_factor * d
bs_time = self.bs_time_factor * (1 - rho) * d
rectangles.append({
'center': ((self.row_cuts[i] + self.row_cuts[i+1]) * self.H / 2, (self.col_cuts[j+1] + self.col_cuts[j]) * self.W / 2),
'flight_time': flight_time,
'bs_time': bs_time,
})
return rectangles
def check_adjustment_threshold(self, threshold=0.1):
"""
检查当前切分位置与原始切分位置的差异是否超过阈值
Args:
threshold (float): 允许的最大调整幅度
Returns:
bool: 如果任何切分位置的调整超过阈值返回True
"""
# 检查行切分位置
delta = 0
for i in range(len(self.row_cuts)):
delta += abs(self.row_cuts[i] - self.ORI_ROW_CUTS[i])
# 检查列切分位置
for i in range(len(self.col_cuts)):
delta += abs(self.col_cuts[i] - self.ORI_COL_CUTS[i])
if delta > threshold:
return True
return False
# def q_learning_solver(self):
# 使用q_learning解多旅行商
# cities: [[x1, x2, x3...], [y1, y2, y3...]] 城市坐标
# rec_center_lt = [rec_info['center']
# for rec_info in rectangles]
# cities = np.column_stack(rec_center_lt)
# cities = np.column_stack((self.center, cities))
# center_idx = []
# for i in range(self.num_cars - 1):
# cities = np.column_stack((cities, self.center))
# center_idx.append(cities.shape[1] - 1)
# tsp = mTSP(params=self.params, num_cities=cities.shape[1], cities=cities, num_cars=self.num_cars,
# center_idx=center_idx, rectangles=rectangles)
# best_time, best_path = tsp.train(self.mTSP_STEPS)
def ga_solver(self, rectangles):
cities = [self.center]
for rec in rectangles:
cities.append(rec['center'])
cities = np.array(cities)
center_idx = [0]
for i in range(self.num_cars - 1):
cities = np.row_stack((cities, self.center))
center_idx.append(cities.shape[0] - 1)
ga = GA(num_drones=self.num_cars, num_city=cities.shape[0], num_total=20,
data=cities, to_process_idx=center_idx, rectangles=rectangles)
best_path, best_time = ga.run()
return best_time, best_path
def get_best_time(self, best_path, rectangles):
cities = [self.center]
for rec in rectangles:
cities.append(rec['center'])
cities = np.array(cities)
center_idx = [0]
for i in range(self.num_cars - 1):
cities = np.row_stack((cities, self.center))
center_idx.append(cities.shape[0] - 1)
ga = GA(num_drones=self.num_cars, num_city=cities.shape[0], num_total=20,
data=cities, to_process_idx=center_idx, rectangles=rectangles)
best_time = ga.compute_pathlen(best_path)
return best_time
def render(self):
if self.phase == 1:
print("Phase 1: Initialize maze environment.")
print(f"Partition values so far: {self.partition_values}")
print(f"Motorcade positon: {self.car_pos}")
# input('1111')
elif self.phase == 2:
print("Phase 2: Play maze.")
print(f'Motorcade trajectory: {self.car_traj}')
# input('2222')