278 lines
11 KiB
Python
278 lines
11 KiB
Python
![]() |
import pylab as plt
|
|||
|
import numpy as np
|
|||
|
import asyncio
|
|||
|
from typing import List, Tuple, Dict, Any
|
|||
|
import yaml
|
|||
|
|
|||
|
class mTSP:
|
|||
|
'''
|
|||
|
用 Q-Learning 求解多旅行商问题
|
|||
|
基于TSP.py修改,增加了多旅行商的支持
|
|||
|
'''
|
|||
|
def __init__(self,
|
|||
|
num_cities: int = 15,
|
|||
|
num_drones: int = 3,
|
|||
|
map_size: Tuple[float, float] = (800.0, 600.0),
|
|||
|
alpha: float = 2,
|
|||
|
beta: float = 1,
|
|||
|
learning_rate: float = 0.001,
|
|||
|
eps: float = 0.1,
|
|||
|
params_file: str = 'params2.yml'):
|
|||
|
'''
|
|||
|
Args:
|
|||
|
num_cities (int): 实际城市数目(不包括虚拟起点)
|
|||
|
num_drones (int): 无人机数量
|
|||
|
map_size (int, int): 地图尺寸(宽,高)
|
|||
|
alpha (float): 一个超参,值越大,越优先探索最近的点
|
|||
|
beta (float): 一个超参,值越大,越优先探索可能导向总距离最优的点
|
|||
|
learning_rate (float): 学习率
|
|||
|
eps (float): 探索率,值越大,探索性越强,但越难收敛
|
|||
|
params_file (str): 参数文件路径
|
|||
|
'''
|
|||
|
self.num_cities = num_cities
|
|||
|
self.num_drones = num_drones
|
|||
|
self.map_size = map_size
|
|||
|
self.alpha = alpha
|
|||
|
self.beta = beta
|
|||
|
self.eps = eps
|
|||
|
self.learning_rate = learning_rate
|
|||
|
|
|||
|
# 加载参数
|
|||
|
with open(params_file, 'r', encoding='utf-8') as file:
|
|||
|
self.params = yaml.safe_load(file)
|
|||
|
|
|||
|
# 生成城市和虚拟起点
|
|||
|
self.cities = self.generate_cities()
|
|||
|
self.to_process_idx = self.generate_start_points()
|
|||
|
|
|||
|
# 计算距离矩阵
|
|||
|
self.distances = self.get_dist_matrix()
|
|||
|
self.mean_distance = self.distances.mean()
|
|||
|
|
|||
|
# Q-learning相关
|
|||
|
self.qualities = np.zeros([self.total_cities, self.total_cities])
|
|||
|
self.normalizers = np.zeros(self.total_cities)
|
|||
|
self.best_path = None
|
|||
|
self.best_path_length = np.inf
|
|||
|
|
|||
|
# 计算每个点的飞行时间和基站时间
|
|||
|
self.rectangles = self.calculate_rectangles()
|
|||
|
|
|||
|
@property
|
|||
|
def total_cities(self) -> int:
|
|||
|
"""总城市数(包括虚拟起点)"""
|
|||
|
return self.num_cities + self.num_drones - 1
|
|||
|
|
|||
|
def generate_cities(self) -> np.ndarray:
|
|||
|
'''生成城市坐标'''
|
|||
|
max_width, max_height = self.map_size
|
|||
|
cities = np.random.random([2, self.num_cities]) \
|
|||
|
* np.array([max_width, max_height]).reshape(2, -1)
|
|||
|
return cities
|
|||
|
|
|||
|
def generate_start_points(self) -> List[int]:
|
|||
|
'''生成起点索引列表'''
|
|||
|
# 添加虚拟起点
|
|||
|
virtual_starts = np.zeros([2, self.num_drones - 1])
|
|||
|
self.cities = np.hstack([self.cities, virtual_starts])
|
|||
|
return list(range(self.num_cities, self.total_cities))
|
|||
|
|
|||
|
def get_dist_matrix(self) -> np.ndarray:
|
|||
|
'''计算距离矩阵'''
|
|||
|
dist_matrix = np.zeros([self.total_cities, self.total_cities])
|
|||
|
for i in range(self.total_cities):
|
|||
|
for j in range(self.total_cities):
|
|||
|
if i == j:
|
|||
|
dist_matrix[i, j] = np.inf
|
|||
|
continue
|
|||
|
xi, xj = self.cities[0, i], self.cities[0, j]
|
|||
|
yi, yj = self.cities[1, i], self.cities[1, j]
|
|||
|
dist_matrix[i, j] = np.sqrt((xi-xj)**2 + (yi-yj)**2)
|
|||
|
|
|||
|
# 设置起点之间的距离为无穷大
|
|||
|
for i in self.to_process_idx:
|
|||
|
for j in self.to_process_idx:
|
|||
|
if i != j:
|
|||
|
dist_matrix[i, j] = np.inf
|
|||
|
|
|||
|
return dist_matrix
|
|||
|
|
|||
|
def calculate_rectangles(self) -> List[Dict[str, Any]]:
|
|||
|
'''计算每个点的飞行时间和基站时间'''
|
|||
|
rectangles = []
|
|||
|
for i in range(self.num_cities):
|
|||
|
d = 1.0 # 这里简化处理,实际应该根据区域大小计算
|
|||
|
rho_time_limit = (self.params['flight_time_factor'] - self.params['trans_time_factor']) / \
|
|||
|
(self.params['comp_time_factor'] - self.params['trans_time_factor'])
|
|||
|
rho_energy_limit = (self.params['battery_energy_capacity'] -
|
|||
|
self.params['flight_energy_factor'] * d -
|
|||
|
self.params['trans_energy_factor'] * d) / \
|
|||
|
(self.params['comp_energy_factor'] * d -
|
|||
|
self.params['trans_energy_factor'] * d)
|
|||
|
rho = min(rho_time_limit, rho_energy_limit)
|
|||
|
|
|||
|
flight_time = self.params['flight_time_factor'] * d
|
|||
|
bs_time = self.params['bs_time_factor'] * (1 - rho) * d
|
|||
|
|
|||
|
rectangles.append({
|
|||
|
'flight_time': flight_time,
|
|||
|
'bs_time': bs_time,
|
|||
|
'center': (self.cities[0, i], self.cities[1, i])
|
|||
|
})
|
|||
|
return rectangles
|
|||
|
|
|||
|
def rollout(self, start_city_id: int = None) -> Tuple[List[int], List[float], List[float]]:
|
|||
|
'''执行一次路径探索'''
|
|||
|
cities_visited = []
|
|||
|
action_probs = []
|
|||
|
|
|||
|
if start_city_id is None:
|
|||
|
start_city_id = np.random.choice(self.to_process_idx)
|
|||
|
current_city_id = start_city_id
|
|||
|
cities_visited.append(current_city_id)
|
|||
|
|
|||
|
while len(cities_visited) < self.total_cities:
|
|||
|
current_city_id, action_prob = self.choose_next_city(cities_visited)
|
|||
|
cities_visited.append(current_city_id)
|
|||
|
action_probs.append(action_prob)
|
|||
|
|
|||
|
# 返回起点
|
|||
|
cities_visited.append(cities_visited[0])
|
|||
|
action_probs.append(1.0)
|
|||
|
|
|||
|
path_length = self.calc_path_length(cities_visited)
|
|||
|
if path_length < self.best_path_length:
|
|||
|
self.best_path = cities_visited
|
|||
|
self.best_path_length = path_length
|
|||
|
|
|||
|
rewards = self.calc_path_rewards(cities_visited, path_length)
|
|||
|
return cities_visited, action_probs, rewards
|
|||
|
|
|||
|
def choose_next_city(self, cities_visited: List[int]) -> Tuple[int, float]:
|
|||
|
'''选择下一个城市'''
|
|||
|
current_city_id = cities_visited[-1]
|
|||
|
probabilities = np.exp(self.qualities[current_city_id])
|
|||
|
|
|||
|
# 将已访问的城市概率设为0
|
|||
|
for city_visited in cities_visited:
|
|||
|
probabilities[city_visited] = 0
|
|||
|
|
|||
|
# 计算softmax概率
|
|||
|
probabilities = probabilities/probabilities.sum()
|
|||
|
|
|||
|
if np.random.random() < self.eps:
|
|||
|
next_city_id = np.random.choice(range(len(probabilities)), p=probabilities)
|
|||
|
else:
|
|||
|
next_city_id = probabilities.argmax()
|
|||
|
|
|||
|
if probabilities.argmax() == next_city_id:
|
|||
|
action_prob = probabilities[next_city_id]*self.eps + (1-self.eps)
|
|||
|
else:
|
|||
|
action_prob = probabilities[next_city_id]*self.eps
|
|||
|
|
|||
|
return next_city_id, action_prob
|
|||
|
|
|||
|
def calc_path_length(self, path: List[int]) -> float:
|
|||
|
'''计算路径长度'''
|
|||
|
# 将路径分成多个子路径
|
|||
|
car_paths = []
|
|||
|
found_start_points = []
|
|||
|
|
|||
|
# 找到所有起点
|
|||
|
for i, city in enumerate(path):
|
|||
|
if city in self.to_process_idx:
|
|||
|
found_start_points.append(i)
|
|||
|
|
|||
|
# 根据起点分割路径
|
|||
|
for i in range(len(found_start_points)-1):
|
|||
|
start_idx = found_start_points[i]
|
|||
|
end_idx = found_start_points[i+1]
|
|||
|
car_paths.append(path[start_idx:end_idx+1])
|
|||
|
|
|||
|
# 计算每个子路径的时间
|
|||
|
T_k_list = []
|
|||
|
for car_path in car_paths:
|
|||
|
flight_time = 0
|
|||
|
bs_time = 0
|
|||
|
car_time = 0
|
|||
|
|
|||
|
# 计算飞行时间和基站时间
|
|||
|
for point in car_path:
|
|||
|
if point not in self.to_process_idx:
|
|||
|
flight_time += self.rectangles[point]['flight_time']
|
|||
|
bs_time += self.rectangles[point]['bs_time']
|
|||
|
|
|||
|
# 计算车辆时间
|
|||
|
for i in range(len(car_path)-1):
|
|||
|
if car_path[i] not in self.to_process_idx and car_path[i+1] not in self.to_process_idx:
|
|||
|
car_time += self.distances[car_path[i], car_path[i+1]] * self.params['car_time_factor']
|
|||
|
|
|||
|
# 计算总时间
|
|||
|
system_time = max(flight_time + car_time, bs_time)
|
|||
|
T_k_list.append(system_time)
|
|||
|
|
|||
|
return max(T_k_list)
|
|||
|
|
|||
|
def calc_path_rewards(self, path: List[int], path_length: float) -> List[float]:
|
|||
|
'''计算路径奖励'''
|
|||
|
rewards = []
|
|||
|
for fr, to in zip(path[:-1], path[1:]):
|
|||
|
dist = self.distances[fr, to]
|
|||
|
reward = (self.mean_distance/path_length)**self.beta
|
|||
|
reward = reward*(self.mean_distance/dist)**self.alpha
|
|||
|
rewards.append(np.log(reward))
|
|||
|
return rewards
|
|||
|
|
|||
|
def calc_updates_for_one_rollout(self, path: List[int], action_probs: List[float],
|
|||
|
rewards: List[float]) -> Tuple[List[float], List[float]]:
|
|||
|
'''计算一次rollout的更新值'''
|
|||
|
qualities = []
|
|||
|
normalizers = []
|
|||
|
for fr, to, reward, action_prob in zip(path[:-1], path[1:], rewards, action_probs):
|
|||
|
log_action_probability = np.log(action_prob)
|
|||
|
qualities.append(- reward*log_action_probability)
|
|||
|
normalizers.append(- (reward + 1)*log_action_probability)
|
|||
|
return qualities, normalizers
|
|||
|
|
|||
|
def update(self, path: List[int], new_qualities: List[float],
|
|||
|
new_normalizers: List[float]) -> None:
|
|||
|
'''更新Q值和normalizer'''
|
|||
|
lr = self.learning_rate
|
|||
|
for fr, to, new_quality, new_normalizer in zip(
|
|||
|
path[:-1], path[1:], new_qualities, new_normalizers):
|
|||
|
self.normalizers[fr] = (1-lr)*self.normalizers[fr] + lr*new_normalizer
|
|||
|
self.qualities[fr, to] = (1-lr)*self.qualities[fr, to] + lr*new_quality
|
|||
|
|
|||
|
async def train_for_one_rollout(self, start_city_id: int) -> None:
|
|||
|
'''训练一次rollout'''
|
|||
|
path, action_probs, rewards = self.rollout(start_city_id)
|
|||
|
new_qualities, new_normalizers = self.calc_updates_for_one_rollout(
|
|||
|
path, action_probs, rewards)
|
|||
|
self.update(path, new_qualities, new_normalizers)
|
|||
|
|
|||
|
async def train_for_one_epoch(self) -> None:
|
|||
|
'''训练一个epoch'''
|
|||
|
tasks = [self.train_for_one_rollout(start_city_id)
|
|||
|
for start_city_id in self.to_process_idx]
|
|||
|
await asyncio.gather(*tasks)
|
|||
|
|
|||
|
async def train(self, num_epochs: int = 1000, display: bool = True) -> None:
|
|||
|
'''训练过程'''
|
|||
|
for epoch in range(num_epochs):
|
|||
|
await self.train_for_one_epoch()
|
|||
|
if display and epoch % 100 == 0:
|
|||
|
print(f"Epoch {epoch}: Best path length = {self.best_path_length:.2f}")
|
|||
|
|
|||
|
async def main():
|
|||
|
# 创建mTSP实例
|
|||
|
mtsp = mTSP(num_cities=12, num_drones=3)
|
|||
|
|
|||
|
# 训练模型
|
|||
|
await mtsp.train(200, display=True)
|
|||
|
|
|||
|
# 输出最终路径
|
|||
|
print(f"\n最优路径: {mtsp.best_path}")
|
|||
|
print(f"路径长度: {mtsp.best_path_length:.2f}")
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
asyncio.run(main())
|