HPCC2025/mtkl_sovler.py

290 lines
12 KiB
Python
Raw Normal View History

import random
import math
import matplotlib.pyplot as plt
import matplotlib.patches as patches
2025-03-11 16:40:20 +08:00
import yaml
# 固定随机种子,便于复现
random.seed(42)
2025-03-13 10:46:28 +08:00
num_iterations = 10000
2025-03-11 16:40:20 +08:00
# ---------------------------
# 参数设置
# ---------------------------
2025-03-11 16:40:20 +08:00
with open('params.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)
H = params['H']
W = params['W']
k = params['num_cars']
flight_time_factor = params['flight_time_factor']
comp_time_factor = params['comp_time_factor']
trans_time_factor = params['trans_time_factor']
car_time_factor = params['car_time_factor']
bs_time_factor = params['bs_time_factor']
flight_energy_factor = params['flight_energy_factor']
comp_energy_factor = params['comp_energy_factor']
trans_energy_factor = params['trans_energy_factor']
battery_energy_capacity = params['battery_energy_capacity']
# ---------------------------
# 蒙特卡洛模拟,寻找最佳方案
# ---------------------------
best_T = float('inf')
best_solution = None
for iteration in range(num_iterations):
# 随机生成分区的行分段数与列分段数
R = random.randint(1, 5) # 行分段数
C = random.randint(1, 5) # 列分段数
# 生成随机的行、列分割边界
row_boundaries = sorted(random.sample(range(1, H), R - 1))
row_boundaries = [0] + row_boundaries + [H]
col_boundaries = sorted(random.sample(range(1, W), C - 1))
col_boundaries = [0] + col_boundaries + [W]
# ---------------------------
# 根据分割边界生成所有矩形任务
# ---------------------------
rectangles = []
valid_partition = True # 标记此分区是否满足所有约束
for i in range(len(row_boundaries) - 1):
for j in range(len(col_boundaries) - 1):
r1 = row_boundaries[i]
r2 = row_boundaries[i + 1]
c1 = col_boundaries[j]
c2 = col_boundaries[j + 1]
d = (r2 - r1) * (c2 - c1) # 任务的照片数量(矩形面积)
# 求解rho
rho_time_limit = (flight_time_factor - trans_time_factor) / \
2025-03-11 16:40:20 +08:00
(comp_time_factor - trans_time_factor)
rho_energy_limit = (battery_energy_capacity - flight_energy_factor * d - trans_energy_factor * d) / \
(comp_energy_factor * d - trans_energy_factor * d)
if rho_energy_limit < 0:
valid_partition = False
break
rho = min(rho_time_limit, rho_energy_limit)
flight_time = flight_time_factor * d
2025-03-11 16:40:20 +08:00
comp_time = comp_time_factor * rho * d
trans_time = trans_time_factor * (1 - rho) * d
2025-03-11 16:40:20 +08:00
bs_time = bs_time_factor * (1 - rho) * d
# 计算任务矩形中心,用于后续车辆移动时间计算
center_r = (r1 + r2) / 2.0
center_c = (c1 + c2) / 2.0
rectangles.append({
'r1': r1, 'r2': r2, 'c1': c1, 'c2': c2,
'd': d,
'rho': rho,
'flight_time': flight_time,
'comp_time': comp_time,
'trans_time': trans_time,
2025-03-11 16:40:20 +08:00
'bs_time': bs_time,
'center': (center_r, center_c)
})
if not valid_partition:
break
# 如果分区中存在任务不满足电池约束,则跳过该分区
if not valid_partition:
continue
# ---------------------------
# 随机将所有矩形任务分配给 k 个系统(车-机-巢)
# ---------------------------
system_tasks = {i: [] for i in range(k)}
for rect in rectangles:
system = random.randint(0, k - 1)
system_tasks[system].append(rect)
# ---------------------------
# 对于每个系统,计算该系统的总完成时间 T_k
# T_k = 所有任务的飞行时间之和 + 车辆的移动时间
# 车辆移动时间:车辆从区域中心出发,依次经过各任务中心(顺序采用距离区域中心的启发式排序)
# ---------------------------
region_center = (H / 2.0, W / 2.0)
T_k_list = []
for i in range(k):
tasks = system_tasks[i]
tasks.sort(key=lambda r: math.hypot(r['center'][0] - region_center[0],
r['center'][1] - region_center[1]))
total_flight_time = sum(task['flight_time'] for task in tasks)
if tasks:
# 车辆从区域中心到第一个任务中心
2025-03-13 10:46:28 +08:00
car_time += math.dist(tasks[0]['center'], region_center) * car_time_factor
# 依次经过任务中心
2025-03-13 10:46:28 +08:00
for j in range(len(tasks) - 1):
prev_center = tasks[j]['center']
curr_center = tasks[j + 1]['center']
car_time += math.dist(curr_center, prev_center) * car_time_factor
2025-03-12 11:33:35 +08:00
# 回到区域中心
2025-03-13 10:46:28 +08:00
car_time += math.dist(region_center, curr_center) * car_time_factor
else:
car_time = 0
# 机巢的计算时间
2025-03-11 16:40:20 +08:00
total_bs_time = sum(task['bs_time'] for task in tasks)
T_k = max(total_flight_time + car_time, total_bs_time)
T_k_list.append(T_k)
T_max = max(T_k_list) # 整体目标 T 为各系统中最大的 T_k
# TODO 没有限制系统的总能耗
if T_max < best_T:
best_T = T_max
best_solution = {
'system_tasks': system_tasks,
'T_k_list': T_k_list,
'T_max': T_max,
'iteration': iteration,
'R': R,
'C': C,
'row_boundaries': row_boundaries,
2025-03-13 10:46:28 +08:00
'col_boundaries': col_boundaries,
'car_time': car_time,
'flight_time': total_flight_time,
'bs_time': total_bs_time
}
# ---------------------------
# 输出最佳方案
# ---------------------------
if best_solution is not None:
print("最佳 T (各系统中最长的完成时间):", best_solution['T_max'])
2025-03-13 10:46:28 +08:00
print(best_solution['iteration'], "次模拟后找到最佳方案:")
print(best_solution['car_time'], best_solution['flight_time'], best_solution['bs_time'])
for i in range(k):
num_tasks = len(best_solution['system_tasks'][i])
print(
f"系统 {i}: 完成时间 T = {best_solution['T_k_list'][i]}, 飞行任务数量: {num_tasks}")
else:
print("在给定的模拟次数内未找到满足所有约束的方案。")
# 在输出最佳方案后添加详细信息
if best_solution is not None:
print("\n各系统详细信息:")
2025-03-13 10:46:28 +08:00
region_center = (W / 2.0, H / 2.0)
for system_id, tasks in best_solution['system_tasks'].items():
print(f"\n系统 {system_id} 的任务详情:")
# 按距离区域中心的距离排序任务
tasks_sorted = sorted(tasks, key=lambda r: math.hypot(r['center'][0] - region_center[0],
r['center'][1] - region_center[1]))
if tasks_sorted:
print(
f"轨迹路线: 区域中心({region_center[0]:.1f}, {region_center[1]:.1f})", end="")
current_pos = region_center
total_car_time = 0
total_flight_time = 0
total_flight_energy = 0
total_comp_energy = 0
total_trans_energy = 0
for i, task in enumerate(tasks_sorted, 1):
# 计算车辆移动时间
car_time = math.hypot(task['center'][0] - current_pos[0],
2025-03-11 16:40:20 +08:00
task['center'][1] - current_pos[1]) * car_time_factor
total_car_time += car_time
# 更新当前位置
current_pos = task['center']
print(
f" -> 任务{i}({current_pos[0]:.1f}, {current_pos[1]:.1f})", end="")
# 累加各项数据
total_flight_time += task['flight_time']
total_flight_energy += flight_energy_factor * task['d']
total_comp_energy += comp_energy_factor * \
task['rho'] * task['d']
total_trans_energy += trans_energy_factor * \
(1 - task['rho']) * task['d']
print("\n")
print(f"任务数量: {len(tasks_sorted)}")
print(f"车辆总移动时间: {total_car_time:.2f}")
print(f"无人机总飞行时间: {total_flight_time:.2f}")
print(f"能耗统计:")
print(f" - 飞行能耗: {total_flight_energy:.2f} 分钟")
print(f" - 计算能耗: {total_comp_energy:.2f} 分钟")
print(f" - 传输能耗: {total_trans_energy:.2f} 分钟")
print(
f" - 总能耗: {(total_flight_energy + total_comp_energy + total_trans_energy):.2f} 分钟")
print("\n各任务详细信息:")
for i, task in enumerate(tasks_sorted, 1):
print(f"\n任务{i}:")
print(
f" 位置: ({task['center'][0]:.1f}, {task['center'][1]:.1f})")
print(f" 照片数量: {task['d']}")
print(f" 卸载比率(ρ): {task['rho']:.2f}")
print(f" 飞行时间: {task['flight_time']:.2f}")
print(f" 计算时间: {task['comp_time']:.2f}")
print(f" 传输时间: {task['trans_time']:.2f}")
print(f" -- 飞行能耗: {task['d'] * flight_energy_factor:.2f} 分钟")
print(f" -- 计算能耗: {task['d'] * comp_energy_factor:.2f} 分钟")
print(f" -- 传输能耗: {task['d'] * trans_energy_factor:.2f} 分钟")
2025-03-11 16:40:20 +08:00
print(f" 基站计算时间: {task['bs_time']:.2f}")
else:
print("该系统没有分配任务")
print("-" * 50)
if best_solution is not None:
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
fig, ax = plt.subplots()
ax.set_xlim(0, W)
ax.set_ylim(0, H)
ax.set_title("区域划分与车-机-巢系统覆盖")
ax.set_xlabel("区域宽度")
ax.set_ylabel("区域高度")
# 定义若干颜色以区分不同系统系统编号从0开始
colors = ['red', 'blue', 'green', 'orange', 'purple', 'cyan', 'magenta']
# 绘制区域中心
region_center = (W / 2.0, H / 2.0) # 注意x对应宽度y对应高度
ax.plot(region_center[0], region_center[1],
'ko', markersize=8, label="区域中心")
# 绘制每个任务区域(矩形)及在矩形中心标注系统编号与卸载比率 ρ
for system_id, tasks in best_solution['system_tasks'].items():
# 重新按车辆行驶顺序排序(启发式:以任务中心距离区域中心的距离排序)
tasks_sorted = sorted(tasks, key=lambda task: math.hypot(
(task['c1'] + (task['c2'] - task['c1']) / 2.0) - region_center[0],
(task['r1'] + (task['r2'] - task['r1']) / 2.0) - region_center[1]
))
for i, task in enumerate(tasks_sorted, 1):
# 绘制矩形:左下角坐标为 (c1, r1),宽度为 (c2 - c1),高度为 (r2 - r1)
rect = patches.Rectangle((task['c1'], task['r1']),
task['c2'] - task['c1'],
task['r2'] - task['r1'],
linewidth=2,
edgecolor=colors[system_id % len(colors)],
facecolor='none')
ax.add_patch(rect)
# 计算矩形中心
center_x = task['c1'] + (task['c2'] - task['c1']) / 2.0
center_y = task['r1'] + (task['r2'] - task['r1']) / 2.0
# 在矩形中心标注:系统编号、执行顺序和卸载比率 ρ
ax.text(center_x, center_y, f"S{system_id}-{i}\nρ={task['rho']:.2f}",
color=colors[system_id % len(colors)],
ha='center', va='center', fontsize=10, fontweight='bold')
# 添加图例
ax.legend()
# 反转 y 轴使得行号从上到下递增(如需,可取消)
ax.invert_yaxis()
plt.show()
else:
print("没有找到满足约束条件的方案,无法进行可视化。")