HPCC2025/test_new_GA/main_parallel.py

133 lines
4.7 KiB
Python
Raw Normal View History

2025-04-03 17:24:54 +08:00
import random
import math
import yaml
import numpy as np
from utils import if_valid_partition
from itertools import product
import json
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
from GA_MTSP import MTSP_GA
def process_partition(row_cuts, col_cuts, params):
row_boundaries = [0.0] + list(row_cuts) + [1.0]
col_boundaries = [0.0] + list(col_cuts) + [1.0]
rectangles = if_valid_partition(row_boundaries, col_boundaries, params)
if not rectangles:
return None # 过滤无效划分
cities = [(params['H'] / 2.0, params['W'] / 2.0)]
for rec in rectangles:
cities.append(rec['center'])
sovler = MTSP_GA(
cities=cities, params=params, rectangles=rectangles, population_size=200, max_iterations=2000)
current_time, current_solution = sovler.solve()
return (current_solution, current_time, row_boundaries, col_boundaries, rectangles)
if __name__ == "__main__": # 重要:在 Windows 上必须加这一行
np.random.seed(42)
random.seed(42)
# ---------------------------
# 需要修改的超参数
# ---------------------------
R = 3
C = 1
params_file = 'params_50_50_3'
batch_size = 60 # 控制一次最多并行多少个任务
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)
H = params['H']
W = params['W']
k = params['num_cars']
flight_time_factor = params['flight_time_factor']
comp_time_factor = params['comp_time_factor']
trans_time_factor = params['trans_time_factor']
car_time_factor = params['car_time_factor']
bs_time_factor = params['bs_time_factor']
flight_energy_factor = params['flight_energy_factor']
comp_energy_factor = params['comp_energy_factor']
trans_energy_factor = params['trans_energy_factor']
battery_energy_capacity = params['battery_energy_capacity']
# 定义数字列表
numbers = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
# 生成所有的排列情况取三次每次都可以从10个数中选
row_product = list(product(numbers, repeat=R))
# 对每种情况从小到大排序,并剔除重复的情况
row_cuts_set = set(
tuple(sorted(set(item for item in prod if item > 0))) for prod in row_product)
row_cuts_set = sorted(row_cuts_set)
col_product = list(product(numbers, repeat=C))
col_cuts_set = set(
tuple(sorted(set(item for item in prod if item > 0))) for prod in col_product)
col_cuts_set = sorted(col_cuts_set)
best_T = float('inf')
best_solution = None
best_row_boundaries = None
best_col_boundaries = None
all_tasks = [(row_cuts, col_cuts)
for row_cuts in row_cuts_set for col_cuts in col_cuts_set]
total_iterations = len(all_tasks)
with ProcessPoolExecutor(max_workers=batch_size) as executor:
futures = set()
results = []
with tqdm(total=total_iterations) as pbar:
for task in all_tasks:
if len(futures) >= batch_size: # 如果并行任务数达到 batch_size等待已有任务完成
for future in as_completed(futures):
results.append(future.result())
pbar.update(1) # 更新进度条
futures.clear() # 清空已完成的任务
futures.add(executor.submit(
process_partition, *task, params)) # 提交新任务
# 处理剩余未完成的任务
for future in as_completed(futures):
results.append(future.result())
pbar.update(1)
# 处理计算结果,找到最优解
for result in results:
if result:
current_solution, current_time, row_boundaries, col_boundaries, rectangles = result
if current_time < best_T:
best_T = current_time
best_solution = current_solution
best_row_boundaries = row_boundaries
best_col_boundaries = col_boundaries
# 解析最佳路径
car_paths = [[x-1 for x in sublist]
for sublist in best_solution]
# 输出最佳方案
print("Best solution:", best_solution)
print("Time:", best_T)
print("Row boundaries:", best_row_boundaries)
print("Col boundaries:", best_col_boundaries)
print("Car Paths:", car_paths)
output_data = {
'row_boundaries': best_row_boundaries,
'col_boundaries': best_col_boundaries,
'car_paths': car_paths
}
with open(f'./solutions/trav_ga_{params_file}_parallel.json', 'w', encoding='utf-8') as file:
json.dump(output_data, file, ensure_ascii=False, indent=4)