2025-04-02 21:33:40 +08:00
|
|
|
|
import numpy as np
|
|
|
|
|
import random
|
|
|
|
|
import math
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import time
|
2025-04-03 17:24:54 +08:00
|
|
|
|
# 设置随机种子
|
|
|
|
|
np.random.seed(42)
|
|
|
|
|
random.seed(42)
|
2025-04-02 21:33:40 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MTSP_GA:
|
2025-04-03 17:24:54 +08:00
|
|
|
|
def __init__(self, cities, params, rectangles, population_size=200, max_iterations=1500):
|
2025-04-02 21:33:40 +08:00
|
|
|
|
"""
|
|
|
|
|
初始化遗传算法求解器
|
|
|
|
|
Args:
|
|
|
|
|
cities: 城市坐标数组,第一个城市为起始点
|
|
|
|
|
vehicle_num: 车辆数量
|
|
|
|
|
population_size: 种群大小
|
|
|
|
|
max_iterations: 最大迭代次数
|
|
|
|
|
"""
|
2025-04-03 17:24:54 +08:00
|
|
|
|
H = params['H']
|
|
|
|
|
W = params['W']
|
|
|
|
|
k = params['num_cars']
|
|
|
|
|
|
|
|
|
|
flight_time_factor = params['flight_time_factor']
|
|
|
|
|
comp_time_factor = params['comp_time_factor']
|
|
|
|
|
trans_time_factor = params['trans_time_factor']
|
|
|
|
|
car_time_factor = params['car_time_factor']
|
|
|
|
|
bs_time_factor = params['bs_time_factor']
|
|
|
|
|
|
|
|
|
|
flight_energy_factor = params['flight_energy_factor']
|
|
|
|
|
comp_energy_factor = params['comp_energy_factor']
|
|
|
|
|
trans_energy_factor = params['trans_energy_factor']
|
|
|
|
|
battery_energy_capacity = params['battery_energy_capacity']
|
|
|
|
|
|
2025-04-02 21:33:40 +08:00
|
|
|
|
self.cities = np.array(cities)
|
|
|
|
|
self.city_count = len(cities)
|
2025-04-03 17:24:54 +08:00
|
|
|
|
self.vehicle_num = k
|
2025-04-02 21:33:40 +08:00
|
|
|
|
self.origin = 0 # 起始点
|
2025-04-03 17:24:54 +08:00
|
|
|
|
self.rectangles = rectangles
|
|
|
|
|
self.car_time_factor = car_time_factor
|
|
|
|
|
self.H = H
|
|
|
|
|
self.W = W
|
2025-04-02 21:33:40 +08:00
|
|
|
|
|
|
|
|
|
# GA参数
|
|
|
|
|
self.population_size = population_size
|
|
|
|
|
self.max_iterations = max_iterations
|
|
|
|
|
self.retain_rate = 0.3 # 强者存活率
|
|
|
|
|
self.random_rate = 0.5 # 弱者存活概率
|
2025-04-03 17:24:54 +08:00
|
|
|
|
self.mutation_rate = 0.5 # 变异率
|
2025-04-02 21:33:40 +08:00
|
|
|
|
|
|
|
|
|
# 计算距离矩阵
|
|
|
|
|
self.distance_matrix = self._compute_distance_matrix()
|
|
|
|
|
|
|
|
|
|
# 记录收敛过程
|
|
|
|
|
self.distance_history = []
|
|
|
|
|
self.best_path_history = []
|
|
|
|
|
|
|
|
|
|
def _compute_distance_matrix(self):
|
|
|
|
|
"""计算城市间距离矩阵"""
|
|
|
|
|
distance = np.zeros((self.city_count, self.city_count))
|
|
|
|
|
for i in range(self.city_count):
|
|
|
|
|
for j in range(self.city_count):
|
|
|
|
|
distance[i][j] = math.sqrt(
|
|
|
|
|
(self.cities[i][0] - self.cities[j][0]) ** 2 +
|
|
|
|
|
(self.cities[i][1] - self.cities[j][1]) ** 2
|
|
|
|
|
)
|
|
|
|
|
return distance
|
|
|
|
|
|
|
|
|
|
def _create_individual(self):
|
|
|
|
|
"""生成初始个体"""
|
|
|
|
|
index = [i for i in range(self.city_count)]
|
|
|
|
|
index.remove(self.origin)
|
|
|
|
|
a = int(np.floor(len(index)/self.vehicle_num))
|
|
|
|
|
X = []
|
|
|
|
|
for i in range(self.vehicle_num):
|
|
|
|
|
if i < self.vehicle_num-1:
|
|
|
|
|
x = index[a*i:a*(i+1)]
|
|
|
|
|
else:
|
|
|
|
|
x = index[a*i:]
|
|
|
|
|
X.append(x)
|
|
|
|
|
return X
|
|
|
|
|
|
|
|
|
|
def _get_total_distance(self, X):
|
|
|
|
|
"""计算路径总距离"""
|
2025-04-03 17:24:54 +08:00
|
|
|
|
# 根据car_paths计算时间
|
|
|
|
|
for car_idx in range(self.vehicle_num):
|
|
|
|
|
car_path = X[car_idx]
|
|
|
|
|
flight_time = sum(self.rectangles[point - 1]['flight_time']
|
|
|
|
|
for point in car_path)
|
|
|
|
|
bs_time = sum(self.rectangles[point - 1]
|
|
|
|
|
['bs_time'] for point in car_path)
|
|
|
|
|
|
|
|
|
|
# 计算车的移动时间,首先在轨迹的首尾添加上大区域中心
|
|
|
|
|
car_time = 0
|
|
|
|
|
car_time += self.distance_matrix[self.origin][car_path[0]] * self.car_time_factor
|
|
|
|
|
car_time += self.distance_matrix[self.origin][car_path[-1]] * self.car_time_factor
|
|
|
|
|
for i in range(len(car_path) - 1):
|
|
|
|
|
first_point = car_path[i]
|
|
|
|
|
second_point = car_path[i + 1]
|
|
|
|
|
car_time += self.distance_matrix[first_point][second_point] * self.car_time_factor
|
|
|
|
|
|
|
|
|
|
system_time = max(flight_time + car_time, bs_time)
|
|
|
|
|
|
|
|
|
|
return system_time
|
2025-04-02 21:33:40 +08:00
|
|
|
|
|
|
|
|
|
def _selection(self, population):
|
|
|
|
|
"""选择操作"""
|
2025-04-03 17:24:54 +08:00
|
|
|
|
graded = [[self._get_total_distance(x), x] for x in population]
|
2025-04-02 21:33:40 +08:00
|
|
|
|
graded = [x[1] for x in sorted(graded)]
|
|
|
|
|
retain_length = int(len(graded) * self.retain_rate)
|
|
|
|
|
parents = graded[:retain_length]
|
|
|
|
|
|
|
|
|
|
for chromosome in graded[retain_length:]:
|
|
|
|
|
if random.random() < self.random_rate:
|
|
|
|
|
parents.append(chromosome)
|
|
|
|
|
return parents
|
|
|
|
|
|
|
|
|
|
def _crossover(self, parents):
|
|
|
|
|
"""交叉操作"""
|
|
|
|
|
target_count = self.population_size - len(parents)
|
|
|
|
|
children = []
|
|
|
|
|
while len(children) < target_count:
|
|
|
|
|
male_index = random.randint(0, len(parents) - 1)
|
|
|
|
|
female_index = random.randint(0, len(parents) - 1)
|
|
|
|
|
if male_index != female_index:
|
|
|
|
|
male = parents[male_index]
|
|
|
|
|
female = parents[female_index]
|
|
|
|
|
|
|
|
|
|
gene1 = []
|
|
|
|
|
gene2 = []
|
|
|
|
|
for i in range(len(male)):
|
|
|
|
|
gene1 += male[i]
|
|
|
|
|
gene2 += female[i]
|
|
|
|
|
|
|
|
|
|
left = random.randint(0, len(gene1)//2)
|
|
|
|
|
right = random.randint(left + 1, len(gene1))
|
|
|
|
|
cut = gene1[left:right]
|
|
|
|
|
copy = gene2.copy()
|
|
|
|
|
for j in cut:
|
|
|
|
|
copy.remove(j)
|
|
|
|
|
|
|
|
|
|
child = copy + cut
|
|
|
|
|
a = int(np.floor(len(child)/self.vehicle_num))
|
|
|
|
|
child_c = []
|
|
|
|
|
for i in range(self.vehicle_num):
|
|
|
|
|
if i < self.vehicle_num - 1:
|
|
|
|
|
x = child[a * i:a * (i + 1)]
|
|
|
|
|
else:
|
|
|
|
|
x = child[a * i:]
|
|
|
|
|
child_c.append(x)
|
|
|
|
|
children.append(child_c)
|
|
|
|
|
return children
|
|
|
|
|
|
|
|
|
|
def _mutation(self, children):
|
|
|
|
|
"""变异操作"""
|
|
|
|
|
for i in range(len(children)):
|
|
|
|
|
if random.random() < self.mutation_rate:
|
|
|
|
|
child = children[i]
|
|
|
|
|
for j in range(int(np.floor(len(child)/2))):
|
|
|
|
|
a = 2*j
|
|
|
|
|
u = random.randint(1, len(child[a]) - 1)
|
|
|
|
|
w = random.randint(1, len(child[a+1]) - 1)
|
|
|
|
|
child_1 = child[a][:u].copy()
|
|
|
|
|
child_2 = child[a][u:].copy()
|
|
|
|
|
child_3 = child[a+1][:w].copy()
|
|
|
|
|
child_4 = child[a+1][w:].copy()
|
|
|
|
|
child_a = child_1+child_3
|
|
|
|
|
child_b = child_2+child_4
|
|
|
|
|
child[a] = child_a
|
|
|
|
|
child[a+1] = child_b
|
|
|
|
|
children[i] = child.copy()
|
|
|
|
|
return children
|
|
|
|
|
|
|
|
|
|
def _get_best_solution(self, population):
|
|
|
|
|
"""获取最优解"""
|
2025-04-03 17:24:54 +08:00
|
|
|
|
graded = [[self._get_total_distance(x), x] for x in population]
|
2025-04-02 21:33:40 +08:00
|
|
|
|
graded = sorted(graded, key=lambda x: x[0])
|
|
|
|
|
return graded[0][0], graded[0][1]
|
|
|
|
|
|
|
|
|
|
def solve(self):
|
|
|
|
|
"""
|
|
|
|
|
求解MTSP,加入早停机制
|
|
|
|
|
当连续50轮没有更好的解时停止迭代
|
|
|
|
|
"""
|
|
|
|
|
# 初始化种群
|
2025-04-03 17:24:54 +08:00
|
|
|
|
population = [self._create_individual()
|
|
|
|
|
for _ in range(self.population_size)]
|
|
|
|
|
|
2025-04-02 21:33:40 +08:00
|
|
|
|
# 初始化早停相关变量
|
|
|
|
|
best_distance = float('inf')
|
|
|
|
|
early_stop_counter = 0
|
|
|
|
|
early_stop_threshold = 100
|
2025-04-03 17:24:54 +08:00
|
|
|
|
|
2025-04-02 21:33:40 +08:00
|
|
|
|
# 迭代优化
|
|
|
|
|
for i in range(self.max_iterations):
|
|
|
|
|
parents = self._selection(population)
|
|
|
|
|
children = self._crossover(parents)
|
|
|
|
|
children = self._mutation(children)
|
|
|
|
|
population = parents + children
|
2025-04-03 17:24:54 +08:00
|
|
|
|
|
2025-04-02 21:33:40 +08:00
|
|
|
|
# 记录当前最优解
|
2025-04-03 17:24:54 +08:00
|
|
|
|
current_distance, current_path = self._get_best_solution(
|
|
|
|
|
population)
|
2025-04-02 21:33:40 +08:00
|
|
|
|
self.distance_history.append(current_distance)
|
|
|
|
|
self.best_path_history.append(current_path)
|
2025-04-03 17:24:54 +08:00
|
|
|
|
|
2025-04-02 21:33:40 +08:00
|
|
|
|
# 早停判断
|
|
|
|
|
if current_distance < best_distance:
|
|
|
|
|
best_distance = current_distance
|
|
|
|
|
best_path = current_path
|
2025-04-03 17:24:54 +08:00
|
|
|
|
# early_stop_counter = 0 # 重置计数器
|
|
|
|
|
# else:
|
|
|
|
|
# early_stop_counter += 1
|
|
|
|
|
|
|
|
|
|
# # 如果连续50轮没有更好的解,则停止迭代
|
|
|
|
|
# if early_stop_counter >= early_stop_threshold:
|
|
|
|
|
# # print(
|
|
|
|
|
# # f"Early stopping at iteration {i} due to no improvement in {early_stop_threshold} iterations")
|
|
|
|
|
# break
|
|
|
|
|
|
2025-04-02 21:33:40 +08:00
|
|
|
|
# 返回最优解
|
|
|
|
|
return best_distance, best_path
|
|
|
|
|
|
|
|
|
|
def plot_convergence(self):
|
|
|
|
|
"""绘制收敛曲线"""
|
|
|
|
|
plt.plot(range(len(self.distance_history)), self.distance_history)
|
|
|
|
|
plt.xlabel('Iteration')
|
|
|
|
|
plt.ylabel('Total Distance')
|
|
|
|
|
plt.title('Convergence Curve')
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
# 城市坐标
|
|
|
|
|
cities = np.array([
|
|
|
|
|
(456, 320), # 起点(基地)
|
|
|
|
|
(228, 0),
|
|
|
|
|
(912, 0),
|
|
|
|
|
(0, 80),
|
|
|
|
|
(114, 80),
|
|
|
|
|
(570, 160),
|
|
|
|
|
(798, 160),
|
|
|
|
|
(342, 240),
|
|
|
|
|
(684, 240),
|
|
|
|
|
(570, 400),
|
|
|
|
|
(912, 400),
|
|
|
|
|
(114, 480),
|
|
|
|
|
(228, 480),
|
|
|
|
|
(342, 560),
|
|
|
|
|
(684, 560),
|
|
|
|
|
(0, 640),
|
|
|
|
|
(798, 640)
|
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
# 创建求解器实例
|
|
|
|
|
solver = MTSP_GA(
|
|
|
|
|
cities=cities,
|
|
|
|
|
vehicle_num=4,
|
|
|
|
|
population_size=200,
|
|
|
|
|
max_iterations=1500
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 求解
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
best_distance, best_path = solver.solve()
|
|
|
|
|
end_time = time.time()
|
|
|
|
|
|
|
|
|
|
# 输出结果
|
|
|
|
|
print(f"最优总距离: {best_distance:.2f}")
|
|
|
|
|
print("最优路径方案:")
|
|
|
|
|
for i, path in enumerate(best_path):
|
|
|
|
|
print(f"车辆{i+1}的路径: {path}")
|
|
|
|
|
print(f"求解时间: {end_time - start_time:.2f}秒")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
main()
|