HPCC2025/visualization.py

234 lines
8.5 KiB
Python
Raw Normal View History

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import json
2025-04-01 10:24:52 +08:00
import math
2025-03-24 17:09:51 +08:00
2025-04-01 10:24:52 +08:00
def visualize_solution(row_boundaries, col_boundaries, car_paths_coords, W, H, rho_list):
region_center = (H / 2.0, W / 2.0)
# 创建正方形图像
fig, ax = plt.subplots(figsize=(8, 8)) # 设置固定的正方形大小
ax.set_xlim(0, W)
2025-03-22 21:43:11 +08:00
ax.set_ylim(H, 0) # 调整y轴方向原点在左上角
2025-04-01 10:24:52 +08:00
# 设置英文标题和标签
# ax.set_title("Monte Carlo", fontsize=12)
2025-04-01 17:46:23 +08:00
# ax.set_title("Greedy", fontsize=12)
ax.set_title("Enumeration-Genetic Algorithm", fontsize=12)
2025-04-01 10:24:52 +08:00
# ax.set_title("DQN fine-tuning", fontsize=12)
2025-04-01 10:24:52 +08:00
ax.set_xlabel("Region Width", fontsize=10)
ax.set_ylabel("Region Height", fontsize=10)
2025-04-01 10:24:52 +08:00
# 定义配色方案(使用更专业的配色)
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
'#9467bd', '#8c564b', '#e377c2', '#7f7f7f']
# 绘制行分割边界
2025-04-01 10:24:52 +08:00
for row in row_boundaries[1:-1]:
ax.axhline(y=row * H, color='gray', linestyle='--', alpha=0.5)
# 绘制列分割边界
2025-04-01 10:24:52 +08:00
for col in col_boundaries[1:-1]:
ax.axvline(x=col * W, color='gray', linestyle='--', alpha=0.5)
2025-03-24 17:09:51 +08:00
# 绘制每辆车的轨迹并标注区域序号
for system_id, path in enumerate(car_paths_coords):
path = [(region_center[0], region_center[1])] + \
path + [(region_center[0], region_center[1])]
y, x = zip(*path)
2025-04-01 10:24:52 +08:00
# 使用箭头绘制路径
for i in range(len(path)-1):
# 绘制带箭头的线段
ax.annotate('',
xy=(x[i+1], y[i+1]),
xytext=(x[i], y[i]),
arrowprops=dict(arrowstyle='->',
color=colors[int(system_id) % len(colors)],
lw=2,
mutation_scale=15),
zorder=1)
# 绘制路径点
ax.plot(x, y, 'o', markersize=6,
color=colors[int(system_id) % len(colors)],
label=f"System {system_id}",
zorder=2)
# 标注每个区域的序号(将序号向上偏移一点)
for idx, (px, py) in enumerate(zip(x[1:-1], y[1:-1])):
offset = H * 0.02 # 根据区域高度设置偏移量
ax.text(px, py - offset, str(idx),
color='black',
fontsize=9,
ha='center',
va='bottom',
bbox=dict(
facecolor='none',
edgecolor='none',
alpha=0.7,
pad=0.5))
# 绘制区域中心设置最高的zorder确保在最上层
ax.plot(region_center[1], region_center[0],
'k*', markersize=12, label="Region Center",
zorder=3)
# 添加图例
2025-04-01 10:24:52 +08:00
ax.legend(loc='upper right', fontsize=9)
# 保持坐标轴比例相等
ax.set_aspect('equal', adjustable='box')
# 调整布局,确保所有元素都显示完整
plt.tight_layout()
# 显示网格
ax.grid(True, linestyle=':', alpha=0.3)
# 在每个矩形区域左上角标注rho值
rho_idx = 0
for i in range(len(row_boundaries) - 1):
for j in range(len(col_boundaries) - 1):
# 获取矩形左上角坐标
x = col_boundaries[j] * W
y = row_boundaries[i] * H
# 添加一个小的偏移量,避免完全贴在边界上
offset_x = W * 0.02
offset_y = H * 0.02
# 标注rho值
ax.text(x + offset_x, y + offset_y,
f'ρ={rho_list[rho_idx]:.2f}',
color='black',
fontsize=8,
ha='left',
va='top',
bbox=dict(facecolor='white',
edgecolor='none',
alpha=0.7,
pad=0.5),
zorder=2)
rho_idx += 1
plt.show()
2025-03-24 17:09:51 +08:00
2025-04-01 10:24:52 +08:00
def restore_from_solution(row_boundaries, col_boundaries, car_paths, params):
H = params['H']
W = params['W']
k = params['num_cars']
flight_time_factor = params['flight_time_factor']
comp_time_factor = params['comp_time_factor']
trans_time_factor = params['trans_time_factor']
car_time_factor = params['car_time_factor']
bs_time_factor = params['bs_time_factor']
flight_energy_factor = params['flight_energy_factor']
comp_energy_factor = params['comp_energy_factor']
trans_energy_factor = params['trans_energy_factor']
battery_energy_capacity = params['battery_energy_capacity']
rectangles = []
for i in range(len(row_boundaries) - 1):
for j in range(len(col_boundaries) - 1):
r1 = row_boundaries[i]
r2 = row_boundaries[i + 1]
c1 = col_boundaries[j]
c2 = col_boundaries[j + 1]
d = (r2 - r1) * H * (c2 - c1) * W # 任务的照片数量(矩形面积)
# 求解rho
rho_time_limit = (flight_time_factor - trans_time_factor) / \
(comp_time_factor - trans_time_factor)
rho_energy_limit = (battery_energy_capacity - flight_energy_factor * d - trans_energy_factor * d) / \
(comp_energy_factor * d - trans_energy_factor * d)
rho = min(rho_time_limit, rho_energy_limit)
flight_time = flight_time_factor * d
comp_time = comp_time_factor * rho * d
trans_time = trans_time_factor * (1 - rho) * d
bs_time = bs_time_factor * (1 - rho) * d
# 计算任务矩形中心,用于后续车辆移动时间计算
center_r = (r1 + r2) / 2.0 * H
center_c = (c1 + c2) / 2.0 * W
rectangles.append({
'rho': rho,
'flight_time': flight_time,
'bs_time': bs_time,
'center': (center_r, center_c)
})
system_times = []
# 根据car_paths计算时间
for car_idx in range(k):
car_path = car_paths[car_idx]
flight_time = sum(rectangles[point]['flight_time']
for point in car_path)
bs_time = sum(rectangles[point]['bs_time'] for point in car_path)
# 计算车的移动时间,首先在轨迹的首尾添加上大区域中心
car_time = 0
for i in range(len(car_path) - 1):
first_point = car_path[i]
second_point = car_path[i + 1]
car_time += math.dist(rectangles[first_point]['center'], rectangles[second_point]['center']) * \
car_time_factor
car_time += math.dist(rectangles[car_path[0]]
['center'], [H / 2, W / 2]) * car_time_factor
car_time += math.dist(rectangles[car_path[-1]]
['center'], [H / 2, W / 2]) * car_time_factor
system_time = max(flight_time + car_time, bs_time)
system_times.append(system_time)
print(f"系统{car_idx}的总时间: {system_time}")
print(f"最终时间: {max(system_times)}")
rho_list = [rectangle['rho'] for rectangle in rectangles]
return rectangles, rho_list
if __name__ == "__main__":
import yaml
2025-03-24 17:09:51 +08:00
# ---------------------------
# 需要修改的超参数
# ---------------------------
2025-04-01 10:24:52 +08:00
params_file = 'params_50_50_3'
2025-04-01 17:46:23 +08:00
solution_file = r'solutions\trav_ga_params_50_50_3_parallel.json'
2025-03-24 17:09:51 +08:00
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)
H = params['H']
W = params['W']
2025-03-24 17:09:51 +08:00
k = params['num_cars']
# 读取最佳方案的JSON文件
2025-03-24 17:09:51 +08:00
with open(solution_file, 'r', encoding='utf-8') as f:
best_solution = json.load(f)
row_boundaries = best_solution['row_boundaries']
col_boundaries = best_solution['col_boundaries']
car_paths = best_solution['car_paths']
2025-04-01 10:24:52 +08:00
rectangles, rho_list = restore_from_solution(
row_boundaries, col_boundaries, car_paths, params)
2025-03-24 17:09:51 +08:00
2025-04-01 10:24:52 +08:00
# 计算分块区域的中心点坐标
rectangles_centers = [rectangle['center'] for rectangle in rectangles]
2025-03-24 17:09:51 +08:00
# 将car_paths里的index换成坐标
car_paths_coords = [[] for _ in range(k)]
for car_idx in range(k):
car_path = car_paths[car_idx]
for point in car_path:
2025-04-01 10:24:52 +08:00
car_paths_coords[car_idx].append(rectangles_centers[point])
2025-03-24 17:09:51 +08:00
2025-04-01 10:24:52 +08:00
visualize_solution(row_boundaries, col_boundaries, car_paths_coords, W, H, rho_list)