HPCC2025/mtkl_sovler.py

208 lines
7.9 KiB
Python
Raw Normal View History

import random
import math
2025-03-11 16:40:20 +08:00
import yaml
import json
2025-03-14 11:01:02 +08:00
import numpy as np
# 固定随机种子,便于复现
random.seed(42)
2025-03-14 11:01:02 +08:00
num_iterations = 10000
2025-03-11 16:40:20 +08:00
# ---------------------------
# 参数设置
# ---------------------------
2025-03-11 16:40:20 +08:00
with open('params.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)
H = params['H']
W = params['W']
k = params['num_cars']
flight_time_factor = params['flight_time_factor']
comp_time_factor = params['comp_time_factor']
trans_time_factor = params['trans_time_factor']
car_time_factor = params['car_time_factor']
bs_time_factor = params['bs_time_factor']
flight_energy_factor = params['flight_energy_factor']
comp_energy_factor = params['comp_energy_factor']
trans_energy_factor = params['trans_energy_factor']
battery_energy_capacity = params['battery_energy_capacity']
# ---------------------------
# 蒙特卡洛模拟,寻找最佳方案
# ---------------------------
best_T = float('inf')
best_solution = None
for iteration in range(num_iterations):
# 随机生成分区的行分段数与列分段数
2025-03-14 11:01:02 +08:00
R = random.randint(0, 5) # 行分段数
C = random.randint(0, 5) # 列分段数
# 生成随机的行、列分割边界
2025-03-14 11:01:02 +08:00
horiz = [np.clip(np.floor(random.random() * 10) /10, 0.0, 0.9) for _ in range(R)]
horiz = sorted(set(horiz))
horiz = horiz if horiz else []
row_boundaries = [0] + horiz + [1]
row_boundaries = [boundary * H for boundary in row_boundaries]
vert = [np.clip(np.floor(random.random() * 10) /10, 0.0, 0.9) for _ in range(C)]
vert = sorted(set(vert))
vert = vert if vert else []
col_boundaries = [0] + vert + [1]
col_boundaries = [boundary * W for boundary in col_boundaries]
# ---------------------------
# 根据分割边界生成所有矩形任务
# ---------------------------
rectangles = []
valid_partition = True # 标记此分区是否满足所有约束
for i in range(len(row_boundaries) - 1):
for j in range(len(col_boundaries) - 1):
r1 = row_boundaries[i]
r2 = row_boundaries[i + 1]
c1 = col_boundaries[j]
c2 = col_boundaries[j + 1]
d = (r2 - r1) * (c2 - c1) # 任务的照片数量(矩形面积)
# 求解rho
rho_time_limit = (flight_time_factor - trans_time_factor) / \
2025-03-11 16:40:20 +08:00
(comp_time_factor - trans_time_factor)
rho_energy_limit = (battery_energy_capacity - flight_energy_factor * d - trans_energy_factor * d) / \
(comp_energy_factor * d - trans_energy_factor * d)
if rho_energy_limit < 0:
valid_partition = False
break
rho = min(rho_time_limit, rho_energy_limit)
flight_time = flight_time_factor * d
2025-03-11 16:40:20 +08:00
comp_time = comp_time_factor * rho * d
trans_time = trans_time_factor * (1 - rho) * d
2025-03-11 16:40:20 +08:00
bs_time = bs_time_factor * (1 - rho) * d
# 计算任务矩形中心,用于后续车辆移动时间计算
center_r = (r1 + r2) / 2.0
center_c = (c1 + c2) / 2.0
rectangles.append({
'r1': r1, 'r2': r2, 'c1': c1, 'c2': c2,
'd': d,
'rho': rho,
'flight_time': flight_time,
'comp_time': comp_time,
'trans_time': trans_time,
2025-03-11 16:40:20 +08:00
'bs_time': bs_time,
'center': (center_r, center_c)
})
if not valid_partition:
break
# 如果分区中存在任务不满足电池约束,则跳过该分区
if not valid_partition:
continue
# ---------------------------
# 随机将所有矩形任务分配给 k 个系统(车-机-巢)
# ---------------------------
system_tasks = {i: [] for i in range(k)}
for rect in rectangles:
system = random.randint(0, k - 1)
system_tasks[system].append(rect)
# ---------------------------
# 对于每个系统,计算该系统的总完成时间 T_k
# T_k = 所有任务的飞行时间之和 + 车辆的移动时间
# 车辆移动时间:车辆从区域中心出发,依次经过各任务中心(顺序采用距离区域中心的启发式排序)
# ---------------------------
region_center = (H / 2.0, W / 2.0)
T_k_list = []
for i in range(k):
tasks = system_tasks[i]
tasks.sort(key=lambda r: math.hypot(r['center'][0] - region_center[0],
r['center'][1] - region_center[1]))
total_flight_time = sum(task['flight_time'] for task in tasks)
if tasks:
# 车辆从区域中心到第一个任务中心
2025-03-14 11:01:02 +08:00
car_time = math.dist(tasks[0]['center'],
region_center) * car_time_factor
# 依次经过任务中心
2025-03-13 10:46:28 +08:00
for j in range(len(tasks) - 1):
prev_center = tasks[j]['center']
curr_center = tasks[j + 1]['center']
2025-03-14 11:01:02 +08:00
car_time += math.dist(curr_center,
prev_center) * car_time_factor
2025-03-12 11:33:35 +08:00
# 回到区域中心
2025-03-13 10:46:28 +08:00
car_time += math.dist(region_center, curr_center) * car_time_factor
else:
car_time = 0
# 机巢的计算时间
2025-03-11 16:40:20 +08:00
total_bs_time = sum(task['bs_time'] for task in tasks)
T_k = max(total_flight_time + car_time, total_bs_time)
T_k_list.append(T_k)
T_max = max(T_k_list) # 整体目标 T 为各系统中最大的 T_k
# TODO 没有限制系统的总能耗
if T_max < best_T:
best_T = T_max
best_solution = {
'system_tasks': system_tasks,
'T_k_list': T_k_list,
'T_max': T_max,
'iteration': iteration,
'R': R,
'C': C,
'row_boundaries': row_boundaries,
2025-03-13 10:46:28 +08:00
'col_boundaries': col_boundaries,
'car_time': car_time,
'flight_time': total_flight_time,
'bs_time': total_bs_time
}
# ---------------------------
# 输出最佳方案
# ---------------------------
if best_solution is not None:
print("最佳 T (各系统中最长的完成时间):", best_solution['T_max'])
2025-03-13 10:46:28 +08:00
print(best_solution['iteration'], "次模拟后找到最佳方案:")
print("分区情况:")
print("行分段数:", best_solution['R'])
print("列分段数:", best_solution['C'])
print("行分割边界:", best_solution['row_boundaries'])
print("列分割边界:", best_solution['col_boundaries'])
print("每辆车的运行轨迹情况:")
car_paths = {}
for i in range(k):
num_tasks = len(best_solution['system_tasks'][i])
2025-03-14 11:01:02 +08:00
print(
f"系统 {i}: 完成时间 T = {best_solution['T_k_list'][i]}, 飞行任务数量: {num_tasks}")
tasks = best_solution['system_tasks'][i]
tasks.sort(key=lambda r: math.hypot(r['center'][0] - region_center[0],
r['center'][1] - region_center[1]))
if tasks:
2025-03-14 11:01:02 +08:00
print(
f"轨迹路线: 区域中心({region_center[0]:.1f}, {region_center[1]:.1f})", end="")
current_pos = region_center
car_path = []
for j, task in enumerate(tasks, 1):
current_pos = task['center']
car_path.append(current_pos)
2025-03-14 11:01:02 +08:00
print(
f" -> 任务{j}({current_pos[0]:.1f}, {current_pos[1]:.1f})", end="")
print(" -> 区域中心")
car_paths[i] = car_path
# 保存分区边界和车辆轨迹到JSON文件
output_data = {
'row_boundaries': [boundary / H for boundary in best_solution['row_boundaries']],
'col_boundaries': [boundary / W for boundary in best_solution['col_boundaries']],
'car_paths': car_paths
}
with open('./solutions/best_solution_mtkl.json', 'w', encoding='utf-8') as f:
json.dump(output_data, f, ensure_ascii=False, indent=4)
else:
print("在给定的模拟次数内未找到满足所有约束的方案。")