修改场景
This commit is contained in:
parent
dab8f4fd8f
commit
27829c5d48
@ -30,10 +30,10 @@ if __name__ == "__main__": # 重要:在 Windows 上必须加这一行
|
||||
# ---------------------------
|
||||
# 需要修改的超参数
|
||||
# ---------------------------
|
||||
R = 1
|
||||
R = 3
|
||||
C = 1
|
||||
params_file = 'params3'
|
||||
batch_size = 10 # 控制一次最多并行多少个任务
|
||||
params_file = 'params_50_50_3'
|
||||
batch_size = 60 # 控制一次最多并行多少个任务
|
||||
|
||||
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
|
||||
params = yaml.safe_load(file)
|
||||
|
@ -225,8 +225,8 @@ if __name__ == "__main__":
|
||||
# ---------------------------
|
||||
# 需要修改的超参数
|
||||
# ---------------------------
|
||||
solution_path = r"solutions\trav_ga_params2_parallel.json"
|
||||
params_file = r"params2"
|
||||
solution_path = r"solutions\trav_ga_params_50_50_3_parallel.json"
|
||||
params_file = r"params_50_50_3"
|
||||
max_iterations=10000
|
||||
initial_temp=100
|
||||
cooling_rate=0.95
|
||||
|
@ -15,9 +15,9 @@ num_iterations = 10000
|
||||
# 随机生成分区的行分段数与列分段数
|
||||
# R = random.randint(0, 3) # 行分段数
|
||||
# C = random.randint(0, 3) # 列分段数
|
||||
R = 1
|
||||
C = 1
|
||||
params_file = 'params3'
|
||||
R = 3
|
||||
C = 3
|
||||
params_file = 'params_50_50_3'
|
||||
|
||||
|
||||
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
|
||||
@ -45,7 +45,7 @@ best_T = float('inf')
|
||||
best_solution = None
|
||||
|
||||
for iteration in range(num_iterations):
|
||||
# 生成随机的行、列分割边界
|
||||
# 切比例
|
||||
horiz = [np.clip(np.floor(random.random() * 10) / 10, 0.0, 0.9)
|
||||
for _ in range(R)]
|
||||
horiz = sorted(set(horiz))
|
||||
|
189
mtkl_sovler2.py
Normal file
189
mtkl_sovler2.py
Normal file
@ -0,0 +1,189 @@
|
||||
import random
|
||||
import math
|
||||
import yaml
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
# 固定随机种子,便于复现
|
||||
random.seed(42)
|
||||
|
||||
|
||||
# ---------------------------
|
||||
# 需要修改的超参数
|
||||
# ---------------------------
|
||||
num_iterations = 10000000000
|
||||
# 随机生成分区的行分段数与列分段数
|
||||
R = random.randint(0, 3) # 行分段数
|
||||
C = random.randint(0, 3) # 列分段数
|
||||
# R = 3
|
||||
# C = 3
|
||||
params_file = 'params_50_50_3'
|
||||
|
||||
|
||||
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
|
||||
params = yaml.safe_load(file)
|
||||
|
||||
H = params['H']
|
||||
W = params['W']
|
||||
k = params['num_cars']
|
||||
|
||||
flight_time_factor = params['flight_time_factor']
|
||||
comp_time_factor = params['comp_time_factor']
|
||||
trans_time_factor = params['trans_time_factor']
|
||||
car_time_factor = params['car_time_factor']
|
||||
bs_time_factor = params['bs_time_factor']
|
||||
|
||||
flight_energy_factor = params['flight_energy_factor']
|
||||
comp_energy_factor = params['comp_energy_factor']
|
||||
trans_energy_factor = params['trans_energy_factor']
|
||||
battery_energy_capacity = params['battery_energy_capacity']
|
||||
|
||||
# ---------------------------
|
||||
# 蒙特卡洛模拟,寻找最佳方案
|
||||
# ---------------------------
|
||||
best_T = float('inf')
|
||||
best_solution = None
|
||||
|
||||
for iteration in range(num_iterations):
|
||||
# 直接切值
|
||||
horiz = [random.random() for _ in range(R)]
|
||||
horiz = sorted(set(horiz))
|
||||
horiz = horiz if horiz else []
|
||||
row_boundaries = [0] + horiz + [1]
|
||||
row_boundaries = [boundary * H for boundary in row_boundaries]
|
||||
|
||||
vert = [random.random() for _ in range(C)]
|
||||
vert = sorted(set(vert))
|
||||
vert = vert if vert else []
|
||||
col_boundaries = [0] + vert + [1]
|
||||
col_boundaries = [boundary * W for boundary in col_boundaries]
|
||||
|
||||
# ---------------------------
|
||||
# 根据分割边界生成所有矩形任务
|
||||
# ---------------------------
|
||||
rectangles = []
|
||||
valid_partition = True # 标记此分区是否满足所有约束
|
||||
for i in range(len(row_boundaries) - 1):
|
||||
for j in range(len(col_boundaries) - 1):
|
||||
r1 = row_boundaries[i]
|
||||
r2 = row_boundaries[i + 1]
|
||||
c1 = col_boundaries[j]
|
||||
c2 = col_boundaries[j + 1]
|
||||
d = (r2 - r1) * (c2 - c1) # 任务的照片数量(矩形面积)
|
||||
|
||||
# 求解rho
|
||||
rho_time_limit = (flight_time_factor - trans_time_factor) / \
|
||||
(comp_time_factor - trans_time_factor)
|
||||
rho_energy_limit = (battery_energy_capacity - flight_energy_factor * d - trans_energy_factor * d) / \
|
||||
(comp_energy_factor * d - trans_energy_factor * d)
|
||||
if rho_energy_limit < 0:
|
||||
valid_partition = False
|
||||
break
|
||||
rho = min(rho_time_limit, rho_energy_limit)
|
||||
flight_time = flight_time_factor * d
|
||||
comp_time = comp_time_factor * rho * d
|
||||
trans_time = trans_time_factor * (1 - rho) * d
|
||||
bs_time = bs_time_factor * (1 - rho) * d
|
||||
|
||||
# 计算任务矩形中心,用于后续车辆移动时间计算
|
||||
center_r = (r1 + r2) / 2.0
|
||||
center_c = (c1 + c2) / 2.0
|
||||
|
||||
rectangles.append({
|
||||
'r1': r1, 'r2': r2, 'c1': c1, 'c2': c2,
|
||||
'd': d,
|
||||
'rho': rho,
|
||||
'flight_time': flight_time,
|
||||
'comp_time': comp_time,
|
||||
'trans_time': trans_time,
|
||||
'bs_time': bs_time,
|
||||
'center': (center_r, center_c)
|
||||
})
|
||||
if not valid_partition:
|
||||
break
|
||||
|
||||
# 如果分区中存在任务不满足电池约束,则跳过该分区
|
||||
if not valid_partition:
|
||||
continue
|
||||
|
||||
# ---------------------------
|
||||
# 随机将所有矩形任务分配给 k 个系统(车-机-巢)
|
||||
# ---------------------------
|
||||
car_paths = [[] for _ in range(k)]
|
||||
for i in range(len(row_boundaries) - 1):
|
||||
for j in range(len(col_boundaries) - 1):
|
||||
car_idx = random.randint(0, k - 1)
|
||||
car_paths[car_idx].append(i * (len(col_boundaries) - 1) + j)
|
||||
|
||||
# ---------------------------
|
||||
# 对于每个系统,计算该系统的总完成时间 T_k:
|
||||
# T_k = 所有任务的飞行时间之和 + 车辆的移动时间
|
||||
# 车辆移动时间:车辆从区域中心出发,依次经过各任务中心(顺序采用距离区域中心的启发式排序)
|
||||
# ---------------------------
|
||||
region_center = (H / 2.0, W / 2.0)
|
||||
T_k_list = []
|
||||
for i in range(k):
|
||||
car_path = car_paths[i]
|
||||
car_path.sort(key=lambda r: math.dist(
|
||||
rectangles[r]['center'], region_center))
|
||||
total_flight_time = sum(
|
||||
rectangles[point]['flight_time'] for point in car_path)
|
||||
if car_path:
|
||||
# 车辆从区域中心到第一个任务中心
|
||||
car_time = math.dist(rectangles[car_path[0]]['center'],
|
||||
region_center) * car_time_factor
|
||||
# 依次经过任务中心
|
||||
for j in range(len(car_path) - 1):
|
||||
prev_center = rectangles[car_path[j]]['center']
|
||||
curr_center = rectangles[car_path[j + 1]]['center']
|
||||
car_time += math.dist(curr_center,
|
||||
prev_center) * car_time_factor
|
||||
# 回到区域中心
|
||||
car_time += math.dist(region_center, curr_center) * car_time_factor
|
||||
else:
|
||||
car_time = 0
|
||||
|
||||
# 机巢的计算时间
|
||||
total_bs_time = sum(rectangles[point]['bs_time'] for point in car_path)
|
||||
T_k = max(total_flight_time + car_time, total_bs_time)
|
||||
T_k_list.append(T_k)
|
||||
|
||||
T_max = max(T_k_list) # 整体目标 T 为各系统中最大的 T_k
|
||||
|
||||
# TODO 没有限制系统的总能耗
|
||||
|
||||
if T_max < best_T:
|
||||
best_T = T_max
|
||||
best_solution = {
|
||||
'car_paths': car_paths,
|
||||
'T_k_list': T_k_list,
|
||||
'T_max': T_max,
|
||||
'iteration': iteration,
|
||||
'R': R,
|
||||
'C': C,
|
||||
'row_boundaries': row_boundaries,
|
||||
'col_boundaries': col_boundaries,
|
||||
'car_time': car_time,
|
||||
'flight_time': total_flight_time,
|
||||
'bs_time': total_bs_time
|
||||
}
|
||||
|
||||
# ---------------------------
|
||||
# 输出最佳方案
|
||||
# ---------------------------
|
||||
if best_solution is not None:
|
||||
print("最佳 T:", best_solution['T_max'])
|
||||
print("Row boundaries:", best_solution['row_boundaries'])
|
||||
print("Col boundaries:", best_solution['col_boundaries'])
|
||||
print("最佳路径:", best_solution['car_paths'])
|
||||
|
||||
# 保存分区边界和车辆轨迹到JSON文件
|
||||
output_data = {
|
||||
'row_boundaries': [boundary / H for boundary in best_solution['row_boundaries']],
|
||||
'col_boundaries': [boundary / W for boundary in best_solution['col_boundaries']],
|
||||
'car_paths': best_solution['car_paths']
|
||||
}
|
||||
with open(f'./solutions/mtkl_{params_file}.json', 'w', encoding='utf-8') as f:
|
||||
json.dump(output_data, f, ensure_ascii=False, indent=4)
|
||||
else:
|
||||
print("在给定的模拟次数内未找到满足所有约束的方案。")
|
16
params3.yml
16
params3.yml
@ -1,16 +0,0 @@
|
||||
H : 30 # 区域高度,网格点之间的距离为25m(单位距离)
|
||||
W : 30 # 区域宽度
|
||||
num_cars : 2 # 系统数量(车-巢-机系统个数)
|
||||
|
||||
# 时间系数(单位:秒,每个网格一张照片)
|
||||
flight_time_factor : 3 # 每张照片对应的飞行时间,无人机飞行速度为9.5m/s,拍摄照片的时间间隔为3s
|
||||
comp_time_factor : 5 # 无人机上每张照片计算时间,5s
|
||||
trans_time_factor : 0.3 # 每张照片传输时间,0.3s
|
||||
car_time_factor : 100 # TODO 汽车每单位距离的移动时间,2s,加了一个放大因子50
|
||||
bs_time_factor : 5 # 机巢上每张照片计算时间
|
||||
|
||||
# 其他参数
|
||||
flight_energy_factor : 0.05 # 单位:分钟/张
|
||||
comp_energy_factor : 0.05 # TODO 计算能耗需要重新估计
|
||||
trans_energy_factor : 0.0025
|
||||
battery_energy_capacity : 20 # 无人机只进行飞行,续航为30分钟
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
"row_boundaries": [
|
||||
0.0,
|
||||
0.3000000000000001,
|
||||
0.30000000000000016,
|
||||
0.4800000000000001,
|
||||
0.77,
|
||||
1.0
|
||||
@ -12,19 +12,19 @@
|
||||
1.0
|
||||
],
|
||||
"car_paths": [
|
||||
[
|
||||
0,
|
||||
2,
|
||||
4
|
||||
],
|
||||
[
|
||||
6,
|
||||
7
|
||||
],
|
||||
[
|
||||
1,
|
||||
3,
|
||||
5
|
||||
],
|
||||
[
|
||||
4,
|
||||
2,
|
||||
0
|
||||
],
|
||||
[
|
||||
7,
|
||||
6
|
||||
]
|
||||
]
|
||||
}
|
@ -1,30 +0,0 @@
|
||||
{
|
||||
"row_boundaries": [
|
||||
0.0,
|
||||
0.5,
|
||||
1.0
|
||||
],
|
||||
"col_boundaries": [
|
||||
0.0,
|
||||
0.2,
|
||||
0.5,
|
||||
0.8,
|
||||
1.0
|
||||
],
|
||||
"car_paths": [
|
||||
[
|
||||
2,
|
||||
3,
|
||||
7
|
||||
],
|
||||
[
|
||||
1,
|
||||
5,
|
||||
6
|
||||
],
|
||||
[
|
||||
0,
|
||||
4
|
||||
]
|
||||
]
|
||||
}
|
@ -1,22 +0,0 @@
|
||||
{
|
||||
"row_boundaries": [
|
||||
0.0,
|
||||
0.5,
|
||||
1.0
|
||||
],
|
||||
"col_boundaries": [
|
||||
0.0,
|
||||
0.5,
|
||||
1.0
|
||||
],
|
||||
"car_paths": [
|
||||
[
|
||||
0,
|
||||
2
|
||||
],
|
||||
[
|
||||
1,
|
||||
3
|
||||
]
|
||||
]
|
||||
}
|
@ -1,30 +0,0 @@
|
||||
{
|
||||
"row_boundaries": [
|
||||
0.0,
|
||||
0.1,
|
||||
0.4,
|
||||
0.7,
|
||||
1.0
|
||||
],
|
||||
"col_boundaries": [
|
||||
0.0,
|
||||
0.5,
|
||||
1.0
|
||||
],
|
||||
"car_paths": [
|
||||
[
|
||||
0,
|
||||
2,
|
||||
4
|
||||
],
|
||||
[
|
||||
5,
|
||||
3,
|
||||
1
|
||||
],
|
||||
[
|
||||
7,
|
||||
6
|
||||
]
|
||||
]
|
||||
}
|
@ -1,22 +0,0 @@
|
||||
{
|
||||
"row_boundaries": [
|
||||
0.0,
|
||||
0.5,
|
||||
1.0
|
||||
],
|
||||
"col_boundaries": [
|
||||
0.0,
|
||||
0.5,
|
||||
1.0
|
||||
],
|
||||
"car_paths": [
|
||||
[
|
||||
0,
|
||||
2
|
||||
],
|
||||
[
|
||||
3,
|
||||
1
|
||||
]
|
||||
]
|
||||
}
|
@ -12,11 +12,6 @@
|
||||
1.0
|
||||
],
|
||||
"car_paths": [
|
||||
[
|
||||
1,
|
||||
3,
|
||||
5
|
||||
],
|
||||
[
|
||||
0,
|
||||
2,
|
||||
@ -25,6 +20,11 @@
|
||||
[
|
||||
6,
|
||||
7
|
||||
],
|
||||
[
|
||||
1,
|
||||
3,
|
||||
5
|
||||
]
|
||||
]
|
||||
}
|
@ -52,8 +52,8 @@ if __name__ == "__main__":
|
||||
# ---------------------------
|
||||
# 需要修改的超参数
|
||||
# ---------------------------
|
||||
params_file = 'params2'
|
||||
solution_file = r'solutions\trav_finetune_params2.json'
|
||||
params_file = 'params3'
|
||||
solution_file = r'solutions\trav_ga_params3_parallel.json'
|
||||
|
||||
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
|
||||
params = yaml.safe_load(file)
|
||||
|
Loading…
Reference in New Issue
Block a user