修改car_pos

This commit is contained in:
weixin_46229132 2025-03-13 21:28:30 +08:00
parent ee914ff930
commit 3086413171
15 changed files with 993 additions and 10 deletions

2
.gitignore vendored
View File

@ -10,6 +10,8 @@ __pycache__/
# Pytorch weights
weights/
solutions/
PPO_preTrained/
PPO_logs/
# Distribution / packaging
.Python

View File

@ -11,6 +11,9 @@ import argparse
from ppo import PPO
from network import FeedForwardNN
from eval_policy import eval_policy
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from env import PartitionMazeEnv
def train(env, hyperparameters, actor_model, critic_model):

View File

@ -11,6 +11,9 @@ import argparse
from ppo import PPO
from network import FeedForwardNN
from eval_policy import eval_policy
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from env import PartitionMazeEnv
def train(env, hyperparameters, actor_model, critic_model):

View File

@ -183,7 +183,7 @@ class PPO:
ep_rews = [] # rewards collected per episode
# Reset the environment. sNote that obs is short for observation.
obs, _ = self.env.reset()
obs = self.env.reset()
done = False
# Run an episode for a maximum of max_timesteps_per_episode timesteps

273
PPO2/PPO.py Normal file
View File

@ -0,0 +1,273 @@
import torch
import torch.nn as nn
from torch.distributions import MultivariateNormal
from torch.distributions import Categorical
################################## set device ##################################
print("============================================================================================")
# set device to cpu or cuda
device = torch.device('cpu')
if(torch.cuda.is_available()):
device = torch.device('cuda:0')
torch.cuda.empty_cache()
print("Device set to : " + str(torch.cuda.get_device_name(device)))
else:
print("Device set to : cpu")
print("============================================================================================")
################################## PPO Policy ##################################
class RolloutBuffer:
def __init__(self):
self.actions = []
self.states = []
self.logprobs = []
self.rewards = []
self.state_values = []
self.is_terminals = []
def clear(self):
del self.actions[:]
del self.states[:]
del self.logprobs[:]
del self.rewards[:]
del self.state_values[:]
del self.is_terminals[:]
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, has_continuous_action_space, action_std_init):
super(ActorCritic, self).__init__()
self.has_continuous_action_space = has_continuous_action_space
if has_continuous_action_space:
self.action_dim = action_dim
self.action_var = torch.full((action_dim,), action_std_init * action_std_init).to(device)
# actor
if has_continuous_action_space :
self.actor = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
# nn.Sigmoid(),
# nn.ReLU(),
nn.Linear(64, 64),
nn.Tanh(),
# nn.Sigmoid(),
# nn.ReLU(),
nn.Linear(64, action_dim),
nn.Tanh()
# nn.Sigmoid()
# nn.ReLU()
)
else:
self.actor = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, action_dim),
nn.Softmax(dim=-1)
)
# critic
self.critic = nn.Sequential(
nn.Linear(state_dim, 64),
nn.Tanh(),
# nn.Sigmoid(),
# nn.ReLU(),
nn.Linear(64, 64),
nn.Tanh(),
# nn.Sigmoid(),
# nn.ReLU(),
nn.Linear(64, 1)
)
def set_action_std(self, new_action_std):
if self.has_continuous_action_space:
self.action_var = torch.full((self.action_dim,), new_action_std * new_action_std).to(device)
else:
print("--------------------------------------------------------------------------------------------")
print("WARNING : Calling ActorCritic::set_action_std() on discrete action space policy")
print("--------------------------------------------------------------------------------------------")
def forward(self):
raise NotImplementedError
def act(self, state):
if self.has_continuous_action_space:
action_mean = self.actor(state)
cov_mat = torch.diag(self.action_var).unsqueeze(dim=0)
dist = MultivariateNormal(action_mean, cov_mat)
else:
action_probs = self.actor(state)
dist = Categorical(action_probs)
action = dist.sample()
action_logprob = dist.log_prob(action)
state_val = self.critic(state)
return action.detach(), action_logprob.detach(), state_val.detach()
def evaluate(self, state, action):
if self.has_continuous_action_space:
action_mean = self.actor(state)
action_var = self.action_var.expand_as(action_mean)
cov_mat = torch.diag_embed(action_var).to(device)
dist = MultivariateNormal(action_mean, cov_mat)
# For Single Action Environments.
if self.action_dim == 1:
action = action.reshape(-1, self.action_dim)
else:
action_probs = self.actor(state)
dist = Categorical(action_probs)
action_logprobs = dist.log_prob(action)
dist_entropy = dist.entropy()
state_values = self.critic(state)
return action_logprobs, state_values, dist_entropy
class PPO:
def __init__(self, state_dim, action_dim, lr_actor, lr_critic, gamma, K_epochs, eps_clip, has_continuous_action_space, action_std_init=0.6):
self.has_continuous_action_space = has_continuous_action_space
if has_continuous_action_space:
self.action_std = action_std_init
self.gamma = gamma
self.eps_clip = eps_clip
self.K_epochs = K_epochs
self.buffer = RolloutBuffer()
self.policy = ActorCritic(state_dim, action_dim, has_continuous_action_space, action_std_init).to(device)
self.optimizer = torch.optim.Adam([
{'params': self.policy.actor.parameters(), 'lr': lr_actor},
{'params': self.policy.critic.parameters(), 'lr': lr_critic}
])
self.policy_old = ActorCritic(state_dim, action_dim, has_continuous_action_space, action_std_init).to(device)
self.policy_old.load_state_dict(self.policy.state_dict())
self.MseLoss = nn.MSELoss()
def set_action_std(self, new_action_std):
if self.has_continuous_action_space:
self.action_std = new_action_std
self.policy.set_action_std(new_action_std)
self.policy_old.set_action_std(new_action_std)
else:
print("--------------------------------------------------------------------------------------------")
print("WARNING : Calling PPO::set_action_std() on discrete action space policy")
print("--------------------------------------------------------------------------------------------")
def decay_action_std(self, action_std_decay_rate, min_action_std):
print("--------------------------------------------------------------------------------------------")
if self.has_continuous_action_space:
self.action_std = self.action_std - action_std_decay_rate
self.action_std = round(self.action_std, 4)
if (self.action_std <= min_action_std):
self.action_std = min_action_std
print("setting actor output action_std to min_action_std : ", self.action_std)
else:
print("setting actor output action_std to : ", self.action_std)
self.set_action_std(self.action_std)
else:
print("WARNING : Calling PPO::decay_action_std() on discrete action space policy")
print("--------------------------------------------------------------------------------------------")
def select_action(self, state):
if self.has_continuous_action_space:
with torch.no_grad():
state = torch.FloatTensor(state).to(device)
action, action_logprob, state_val = self.policy_old.act(state)
self.buffer.states.append(state)
self.buffer.actions.append(action)
self.buffer.logprobs.append(action_logprob)
self.buffer.state_values.append(state_val)
return action.detach().cpu().numpy().flatten()
else:
with torch.no_grad():
state = torch.FloatTensor(state).to(device)
action, action_logprob, state_val = self.policy_old.act(state)
self.buffer.states.append(state)
self.buffer.actions.append(action)
self.buffer.logprobs.append(action_logprob)
self.buffer.state_values.append(state_val)
return action.item()
def update(self):
# Monte Carlo estimate of returns
rewards = []
discounted_reward = 0
for reward, is_terminal in zip(reversed(self.buffer.rewards), reversed(self.buffer.is_terminals)):
if is_terminal:
discounted_reward = 0
discounted_reward = reward + (self.gamma * discounted_reward)
rewards.insert(0, discounted_reward)
# Normalizing the rewards
rewards = torch.tensor(rewards, dtype=torch.float32).to(device)
rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-7)
# convert list to tensor
old_states = torch.squeeze(torch.stack(self.buffer.states, dim=0)).detach().to(device)
old_actions = torch.squeeze(torch.stack(self.buffer.actions, dim=0)).detach().to(device)
old_logprobs = torch.squeeze(torch.stack(self.buffer.logprobs, dim=0)).detach().to(device)
old_state_values = torch.squeeze(torch.stack(self.buffer.state_values, dim=0)).detach().to(device)
# calculate advantages
advantages = rewards.detach() - old_state_values.detach()
# Optimize policy for K epochs
for _ in range(self.K_epochs):
# Evaluating old actions and values
logprobs, state_values, dist_entropy = self.policy.evaluate(old_states, old_actions)
# match state_values tensor dimensions with rewards tensor
state_values = torch.squeeze(state_values)
# Finding the ratio (pi_theta / pi_theta__old)
ratios = torch.exp(logprobs - old_logprobs.detach())
# Finding Surrogate Loss
surr1 = ratios * advantages
surr2 = torch.clamp(ratios, 1-self.eps_clip, 1+self.eps_clip) * advantages
# final loss of clipped objective PPO
loss = -torch.min(surr1, surr2) + 0.5 * self.MseLoss(state_values, rewards) - 0.01 * dist_entropy
# take gradient step
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
# Copy new weights into old policy
self.policy_old.load_state_dict(self.policy.state_dict())
# clear buffer
self.buffer.clear()
def save(self, checkpoint_path):
torch.save(self.policy_old.state_dict(), checkpoint_path)
def load(self, checkpoint_path):
self.policy_old.load_state_dict(torch.load(checkpoint_path, map_location=lambda storage, loc: storage))
self.policy.load_state_dict(torch.load(checkpoint_path, map_location=lambda storage, loc: storage))

142
PPO2/plot_graph.py Normal file
View File

@ -0,0 +1,142 @@
import os
import pandas as pd
import matplotlib.pyplot as plt
def save_graph():
print("============================================================================================")
# env_name = 'CartPole-v1'
# env_name = 'LunarLander-v2'
# env_name = 'BipedalWalker-v2'
env_name = 'RoboschoolWalker2d-v1'
fig_num = 0 #### change this to prevent overwriting figures in same env_name folder
plot_avg = True # plot average of all runs; else plot all runs separately
fig_width = 10
fig_height = 6
# smooth out rewards to get a smooth and a less smooth (var) plot lines
window_len_smooth = 20
min_window_len_smooth = 1
linewidth_smooth = 1.5
alpha_smooth = 1
window_len_var = 5
min_window_len_var = 1
linewidth_var = 2
alpha_var = 0.1
colors = ['red', 'blue', 'green', 'orange', 'purple', 'olive', 'brown', 'magenta', 'cyan', 'crimson','gray', 'black']
# make directory for saving figures
figures_dir = "PPO_figs"
if not os.path.exists(figures_dir):
os.makedirs(figures_dir)
# make environment directory for saving figures
figures_dir = figures_dir + '/' + env_name + '/'
if not os.path.exists(figures_dir):
os.makedirs(figures_dir)
fig_save_path = figures_dir + '/PPO_' + env_name + '_fig_' + str(fig_num) + '.png'
# get number of log files in directory
log_dir = "PPO_logs" + '/' + env_name + '/'
current_num_files = next(os.walk(log_dir))[2]
num_runs = len(current_num_files)
all_runs = []
for run_num in range(num_runs):
log_f_name = log_dir + '/PPO_' + env_name + "_log_" + str(run_num) + ".csv"
print("loading data from : " + log_f_name)
data = pd.read_csv(log_f_name)
data = pd.DataFrame(data)
print("data shape : ", data.shape)
all_runs.append(data)
print("--------------------------------------------------------------------------------------------")
ax = plt.gca()
if plot_avg:
# average all runs
df_concat = pd.concat(all_runs)
df_concat_groupby = df_concat.groupby(df_concat.index)
data_avg = df_concat_groupby.mean()
# smooth out rewards to get a smooth and a less smooth (var) plot lines
data_avg['reward_smooth'] = data_avg['reward'].rolling(window=window_len_smooth, win_type='triang', min_periods=min_window_len_smooth).mean()
data_avg['reward_var'] = data_avg['reward'].rolling(window=window_len_var, win_type='triang', min_periods=min_window_len_var).mean()
data_avg.plot(kind='line', x='timestep' , y='reward_smooth',ax=ax,color=colors[0], linewidth=linewidth_smooth, alpha=alpha_smooth)
data_avg.plot(kind='line', x='timestep' , y='reward_var',ax=ax,color=colors[0], linewidth=linewidth_var, alpha=alpha_var)
# keep only reward_smooth in the legend and rename it
handles, labels = ax.get_legend_handles_labels()
ax.legend([handles[0]], ["reward_avg_" + str(len(all_runs)) + "_runs"], loc=2)
else:
for i, run in enumerate(all_runs):
# smooth out rewards to get a smooth and a less smooth (var) plot lines
run['reward_smooth_' + str(i)] = run['reward'].rolling(window=window_len_smooth, win_type='triang', min_periods=min_window_len_smooth).mean()
run['reward_var_' + str(i)] = run['reward'].rolling(window=window_len_var, win_type='triang', min_periods=min_window_len_var).mean()
# plot the lines
run.plot(kind='line', x='timestep' , y='reward_smooth_' + str(i),ax=ax,color=colors[i % len(colors)], linewidth=linewidth_smooth, alpha=alpha_smooth)
run.plot(kind='line', x='timestep' , y='reward_var_' + str(i),ax=ax,color=colors[i % len(colors)], linewidth=linewidth_var, alpha=alpha_var)
# keep alternate elements (reward_smooth_i) in the legend
handles, labels = ax.get_legend_handles_labels()
new_handles = []
new_labels = []
for i in range(len(handles)):
if(i%2 == 0):
new_handles.append(handles[i])
new_labels.append(labels[i])
ax.legend(new_handles, new_labels, loc=2)
# ax.set_yticks(np.arange(0, 1800, 200))
# ax.set_xticks(np.arange(0, int(4e6), int(5e5)))
ax.grid(color='gray', linestyle='-', linewidth=1, alpha=0.2)
ax.set_xlabel("Timesteps", fontsize=12)
ax.set_ylabel("Rewards", fontsize=12)
plt.title(env_name, fontsize=14)
fig = plt.gcf()
fig.set_size_inches(fig_width, fig_height)
print("============================================================================================")
plt.savefig(fig_save_path)
print("figure saved at : ", fig_save_path)
print("============================================================================================")
plt.show()
if __name__ == '__main__':
save_graph()

123
PPO2/test.py Normal file
View File

@ -0,0 +1,123 @@
import os
import glob
import time
from datetime import datetime
import torch
import numpy as np
# import gym
# import roboschool
from PPO import PPO
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from env import PartitionMazeEnv
#################################### Testing ###################################
def test():
print("============================================================================================")
################## hyperparameters ##################
# env_name = "CartPole-v1"
# has_continuous_action_space = False
# max_ep_len = 400
# action_std = None
# env_name = "LunarLander-v2"
# has_continuous_action_space = False
# max_ep_len = 300
# action_std = None
# env_name = "BipedalWalker-v2"
# has_continuous_action_space = True
# max_ep_len = 1500 # max timesteps in one episode
# action_std = 0.1 # set same std for action distribution which was used while saving
env_name = "test"
has_continuous_action_space = True
max_ep_len = 1000 # max timesteps in one episode
action_std = 0.1 # set same std for action distribution which was used while saving
render = True # render environment on screen
frame_delay = 0 # if required; add delay b/w frames
total_test_episodes = 10 # total num of testing episodes
K_epochs = 80 # update policy for K epochs
eps_clip = 0.2 # clip parameter for PPO
gamma = 0.99 # discount factor
lr_actor = 0.0003 # learning rate for actor
lr_critic = 0.001 # learning rate for critic
#####################################################
# env = gym.make(env_name)
env = PartitionMazeEnv()
# state space dimension
state_dim = env.observation_space.shape[0]
# action space dimension
if has_continuous_action_space:
action_dim = env.action_space.shape[0]
else:
action_dim = env.action_space.n
# initialize a PPO agent
ppo_agent = PPO(state_dim, action_dim, lr_actor, lr_critic, gamma, K_epochs, eps_clip, has_continuous_action_space, action_std)
# preTrained weights directory
random_seed = 0 #### set this to load a particular checkpoint trained on random seed
run_num_pretrained = 0 #### set this to load a particular checkpoint num
directory = "PPO_preTrained" + '/' + env_name + '/'
checkpoint_path = directory + "PPO_{}_{}_{}.pth".format(env_name, random_seed, run_num_pretrained)
print("loading network from : " + checkpoint_path)
ppo_agent.load(checkpoint_path)
print("--------------------------------------------------------------------------------------------")
test_running_reward = 0
for ep in range(1, total_test_episodes+1):
ep_reward = 0
state = env.reset()
for t in range(1, max_ep_len+1):
action = ppo_agent.select_action(state)
state, reward, done, _, _ = env.step(action)
ep_reward += reward
if render:
env.render()
time.sleep(frame_delay)
if done:
break
# clear buffer
ppo_agent.buffer.clear()
test_running_reward += ep_reward
print('Episode: {} \t\t Reward: {}'.format(ep, round(ep_reward, 2)))
ep_reward = 0
env.close()
print("============================================================================================")
avg_test_reward = test_running_reward / total_test_episodes
avg_test_reward = round(avg_test_reward, 2)
print("average test reward : " + str(avg_test_reward))
print("============================================================================================")
if __name__ == '__main__':
test()

266
PPO2/train.py Normal file
View File

@ -0,0 +1,266 @@
import os
import glob
import time
from datetime import datetime
import torch
import numpy as np
# import gym
# import roboschool
import gymnasium as gym
from PPO import PPO
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from env import PartitionMazeEnv
################################### Training ###################################
def train():
print("============================================================================================")
####### initialize environment hyperparameters ######
env_name = "test"
has_continuous_action_space = True # continuous action space; else discrete
max_ep_len = 100 # max timesteps in one episode
max_training_timesteps = int(3e8) # break training loop if timeteps > max_training_timesteps
print_freq = max_ep_len * 10 # print avg reward in the interval (in num timesteps)
log_freq = max_ep_len * 2 # log avg reward in the interval (in num timesteps)
save_model_freq = int(1e5) # save model frequency (in num timesteps)
action_std = 0.6 # starting std for action distribution (Multivariate Normal)
action_std_decay_rate = 0.05 # linearly decay action_std (action_std = action_std - action_std_decay_rate)
min_action_std = 0.1 # minimum action_std (stop decay after action_std <= min_action_std)
action_std_decay_freq = int(2.5e5) # action_std decay frequency (in num timesteps)
#####################################################
## Note : print/log frequencies should be > than max_ep_len
################ PPO hyperparameters ################
update_timestep = max_ep_len * 4 # update policy every n timesteps
K_epochs = 80 # update policy for K epochs in one PPO update
eps_clip = 0.2 # clip parameter for PPO
gamma = 0.99 # discount factor
lr_actor = 0.0003 # learning rate for actor network
lr_critic = 0.001 # learning rate for critic network
random_seed = 0 # set random seed if required (0 = no random seed)
#####################################################
print("training environment name : " + env_name)
# env = gym.make(env_name)
env = PartitionMazeEnv()
# state space dimension
state_dim = env.observation_space.shape[0]
# action space dimension
if has_continuous_action_space:
action_dim = env.action_space.shape[0]
else:
action_dim = env.action_space.n
###################### logging ######################
#### log files for multiple runs are NOT overwritten
log_dir = "PPO_logs"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
log_dir = log_dir + '/' + env_name + '/'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
#### get number of log files in log directory
run_num = 0
current_num_files = next(os.walk(log_dir))[2]
run_num = len(current_num_files)
#### create new log file for each run
log_f_name = log_dir + '/PPO_' + env_name + "_log_" + str(run_num) + ".csv"
print("current logging run number for " + env_name + " : ", run_num)
print("logging at : " + log_f_name)
#####################################################
################### checkpointing ###################
run_num_pretrained = 0 #### change this to prevent overwriting weights in same env_name folder
directory = "PPO_preTrained"
if not os.path.exists(directory):
os.makedirs(directory)
directory = directory + '/' + env_name + '/'
if not os.path.exists(directory):
os.makedirs(directory)
checkpoint_path = directory + "PPO_{}_{}_{}.pth".format(env_name, random_seed, run_num_pretrained)
print("save checkpoint path : " + checkpoint_path)
#####################################################
############# print all hyperparameters #############
print("--------------------------------------------------------------------------------------------")
print("max training timesteps : ", max_training_timesteps)
print("max timesteps per episode : ", max_ep_len)
print("model saving frequency : " + str(save_model_freq) + " timesteps")
print("log frequency : " + str(log_freq) + " timesteps")
print("printing average reward over episodes in last : " + str(print_freq) + " timesteps")
print("--------------------------------------------------------------------------------------------")
print("state space dimension : ", state_dim)
print("action space dimension : ", action_dim)
print("--------------------------------------------------------------------------------------------")
if has_continuous_action_space:
print("Initializing a continuous action space policy")
print("--------------------------------------------------------------------------------------------")
print("starting std of action distribution : ", action_std)
print("decay rate of std of action distribution : ", action_std_decay_rate)
print("minimum std of action distribution : ", min_action_std)
print("decay frequency of std of action distribution : " + str(action_std_decay_freq) + " timesteps")
else:
print("Initializing a discrete action space policy")
print("--------------------------------------------------------------------------------------------")
print("PPO update frequency : " + str(update_timestep) + " timesteps")
print("PPO K epochs : ", K_epochs)
print("PPO epsilon clip : ", eps_clip)
print("discount factor (gamma) : ", gamma)
print("--------------------------------------------------------------------------------------------")
print("optimizer learning rate actor : ", lr_actor)
print("optimizer learning rate critic : ", lr_critic)
if random_seed:
print("--------------------------------------------------------------------------------------------")
print("setting random seed to ", random_seed)
torch.manual_seed(random_seed)
env.seed(random_seed)
np.random.seed(random_seed)
#####################################################
print("============================================================================================")
################# training procedure ################
# initialize a PPO agent
ppo_agent = PPO(state_dim, action_dim, lr_actor, lr_critic, gamma, K_epochs, eps_clip, has_continuous_action_space, action_std)
# track total training time
start_time = datetime.now().replace(microsecond=0)
print("Started training at (GMT) : ", start_time)
print("============================================================================================")
# logging file
log_f = open(log_f_name,"w+")
log_f.write('episode,timestep,reward\n')
# printing and logging variables
print_running_reward = 0
print_running_episodes = 0
log_running_reward = 0
log_running_episodes = 0
time_step = 0
i_episode = 0
# training loop
while time_step <= max_training_timesteps:
state = env.reset()
current_ep_reward = 0
for t in range(1, max_ep_len+1):
# select action with policy
action = ppo_agent.select_action(state)
state, reward, done, _, _ = env.step(action)
# saving reward and is_terminals
ppo_agent.buffer.rewards.append(reward)
ppo_agent.buffer.is_terminals.append(done)
time_step +=1
current_ep_reward += reward
# update PPO agent
if time_step % update_timestep == 0:
ppo_agent.update()
# if continuous action space; then decay action std of ouput action distribution
if has_continuous_action_space and time_step % action_std_decay_freq == 0:
ppo_agent.decay_action_std(action_std_decay_rate, min_action_std)
# log in logging file
if time_step % log_freq == 0:
# log average reward till last episode
log_avg_reward = log_running_reward / log_running_episodes
log_avg_reward = round(log_avg_reward, 4)
log_f.write('{},{},{}\n'.format(i_episode, time_step, log_avg_reward))
log_f.flush()
log_running_reward = 0
log_running_episodes = 0
# printing average reward
if time_step % print_freq == 0:
# print average reward till last episode
print_avg_reward = print_running_reward / print_running_episodes
print_avg_reward = round(print_avg_reward, 2)
print("Episode : {} \t\t Timestep : {} \t\t Average Reward : {}".format(i_episode, time_step, print_avg_reward))
print_running_reward = 0
print_running_episodes = 0
# save model weights
if time_step % save_model_freq == 0:
print("--------------------------------------------------------------------------------------------")
print("saving model at : " + checkpoint_path)
ppo_agent.save(checkpoint_path)
print("model saved")
print("Elapsed Time : ", datetime.now().replace(microsecond=0) - start_time)
print("--------------------------------------------------------------------------------------------")
# break; if the episode is over
if done:
break
print_running_reward += current_ep_reward
print_running_episodes += 1
log_running_reward += current_ep_reward
log_running_episodes += 1
i_episode += 1
log_f.close()
env.close()
# print total training time
print("============================================================================================")
end_time = datetime.now().replace(microsecond=0)
print("Started training at (GMT) : ", start_time)
print("Finished training at (GMT) : ", end_time)
print("Total training time : ", end_time - start_time)
print("============================================================================================")
if __name__ == '__main__':
train()

View File

@ -64,7 +64,7 @@ class PartitionMazeEnv(gym.Env):
self.BASE_LINE = 3500.0 # 基准时间通过greedy或者蒙特卡洛计算出来
self.step_count = 0
self.rectangles = {}
self.car_pos = [(0.5, 0.5) for _ in range(self.num_cars)]
self.car_pos = [(self.H / 2, self.W / 2) for _ in range(self.num_cars)]
self.car_traj = [[] for _ in range(self.num_cars)]
self.current_car_index = 0
@ -79,13 +79,13 @@ class PartitionMazeEnv(gym.Env):
self.region_centers = []
self.step_count = 0
self.rectangles = {}
self.car_pos = [(0.5, 0.5) for _ in range(self.num_cars)]
self.car_pos = [(self.H / 2, self.W / 2) for _ in range(self.num_cars)]
self.car_traj = [[] for _ in range(self.num_cars)]
self.current_car_index = 0
# 状态:前 4 维为 partition_values其余补 0
state = np.concatenate(
[self.partition_values, np.zeros(np.array(self.car_pos).flatten().shape[0], dtype=np.float32)])
return state, {}
return state
def step(self, action):
# 在所有阶段动作均为 1 维连续动作,取 action[0]
@ -153,12 +153,14 @@ class PartitionMazeEnv(gym.Env):
[self.partition_values, np.zeros(np.array(self.car_pos).flatten().shape[0], dtype=np.float32)])
return state, reward, True, False, {}
else:
reward = 10
# 进入阶段 1初始化迷宫
self.phase = 1
state = np.concatenate(
[self.partition_values, np.array(self.car_pos).flatten()])
reward = 10
# 构建反向索引,方便后续计算
self.reverse_rectangles = {v['center']: k for k, v in self.rectangles.items()}
return state, reward, False, False, {}
elif self.phase == 1:
@ -172,7 +174,7 @@ class PartitionMazeEnv(gym.Env):
# 将index映射到笛卡尔坐标
coord = (target_region_index // (len(self.col_cuts) - 1),
target_region_index % (len(self.col_cuts) - 1))
self.car_pos[self.init_maze_step] = coord
self.car_pos[self.init_maze_step] = self.rectangles[coord]['center']
self.car_traj[self.init_maze_step].append(coord)
self.rectangles[coord]['is_visited'] = True
@ -190,7 +192,8 @@ class PartitionMazeEnv(gym.Env):
elif self.phase == 2:
# 阶段 2路径规划走迷宫
current_car = self.current_car_index
current_row, current_col = self.car_pos[current_car]
# 查表,找出当前车辆所在的网格
current_row, current_col = self.reverse_rectangles[self.car_pos[current_car]]
# 当前动作 a 为 1 维连续动作,映射到四个方向
if a < 0.2:
@ -219,7 +222,8 @@ class PartitionMazeEnv(gym.Env):
# TODO 移动不合法,加一些惩罚
# 更新车辆位置
self.car_pos[current_car] = (new_row, new_col)
self.car_pos[current_car] = self.rectangles[(
new_row, new_col)]['center']
if new_row != current_row or new_col != current_col:
self.car_traj[current_car].append((new_row, new_col))
self.step_count += 1

View File

@ -6,7 +6,7 @@ import json
# 固定随机种子,便于复现
random.seed(42)
num_iterations = 10000
num_iterations = 1000000
# ---------------------------
# 参数设置

97
ray/atari_ppo.py Normal file
View File

@ -0,0 +1,97 @@
# These tags allow extracting portions of this script on Anyscale.
# ws-template-imports-start
import gymnasium as gym
from ray import tune
from ray.rllib.algorithms.ppo import PPOConfig
from ray.rllib.connectors.env_to_module.frame_stacking import FrameStackingEnvToModule
from ray.rllib.connectors.learner.frame_stacking import FrameStackingLearner
from ray.rllib.core.rl_module.default_model_config import DefaultModelConfig
from ray.rllib.env.wrappers.atari_wrappers import wrap_atari_for_new_api_stack
from ray.rllib.utils.test_utils import add_rllib_example_script_args
# ws-template-imports-end
parser = add_rllib_example_script_args(
default_reward=float("inf"),
default_timesteps=3000000,
default_iters=100000000000,
)
parser.set_defaults(
enable_new_api_stack=True,
env="ale_py:ALE/Pong-v5",
)
# Use `parser` to add your own custom command line options to this script
# and (if needed) use their values to set up `config` below.
args = parser.parse_args()
NUM_LEARNERS = args.num_learners or 1
ENV = args.env
# These tags allow extracting portions of this script on Anyscale.
# ws-template-code-start
def _make_env_to_module_connector(env):
return FrameStackingEnvToModule(num_frames=4)
def _make_learner_connector(input_observation_space, input_action_space):
return FrameStackingLearner(num_frames=4)
# Create a custom Atari setup (w/o the usual RLlib-hard-coded framestacking in it).
# We would like our frame stacking connector to do this job.
def _env_creator(cfg):
return wrap_atari_for_new_api_stack(
gym.make(ENV, **cfg, render_mode="rgb_array"),
# Perform frame-stacking through ConnectorV2 API.
framestack=None,
)
tune.register_env("env", _env_creator)
config = (
PPOConfig()
.environment(
"env",
env_config={
# Make analogous to old v4 + NoFrameskip.
"frameskip": 1,
"full_action_space": False,
"repeat_action_probability": 0.0,
},
clip_rewards=True,
)
.env_runners(
env_to_module_connector=_make_env_to_module_connector,
)
.training(
learner_connector=_make_learner_connector,
train_batch_size_per_learner=4000,
minibatch_size=128,
lambda_=0.95,
kl_coeff=0.5,
clip_param=0.1,
vf_clip_param=10.0,
entropy_coeff=0.01,
num_epochs=10,
lr=0.00015 * NUM_LEARNERS,
grad_clip=100.0,
grad_clip_by="global_norm",
)
.rl_module(
model_config=DefaultModelConfig(
conv_filters=[[16, 4, 2], [32, 4, 2], [64, 4, 2], [128, 4, 2]],
conv_activation="relu",
head_fcnet_hiddens=[256],
vf_share_layers=True,
),
)
)
# ws-template-code-end
if __name__ == "__main__":
from ray.rllib.utils.test_utils import run_rllib_example_script_experiment
run_rllib_example_script_experiment(config, args=args)

32
ray/cartpole_ppo.py Normal file
View File

@ -0,0 +1,32 @@
from ray.rllib.algorithms.ppo import PPOConfig
from ray.rllib.core.rl_module.default_model_config import DefaultModelConfig
from ray.rllib.utils.test_utils import add_rllib_example_script_args
parser = add_rllib_example_script_args(default_reward=450.0, default_timesteps=300000)
parser.set_defaults(enable_new_api_stack=True)
# Use `parser` to add your own custom command line options to this script
# and (if needed) use their values to set up `config` below.
args = parser.parse_args()
config = (
PPOConfig()
.environment("CartPole-v1")
.training(
lr=0.0003,
num_epochs=6,
vf_loss_coeff=0.01,
)
.rl_module(
model_config=DefaultModelConfig(
fcnet_hiddens=[32],
fcnet_activation="linear",
vf_share_layers=True,
),
)
)
if __name__ == "__main__":
from ray.rllib.utils.test_utils import run_rllib_example_script_experiment
run_rllib_example_script_experiment(config, args)

38
ray/partition_maze_ppo.py Normal file
View File

@ -0,0 +1,38 @@
import gymnasium as gym
from ray import tune
from ray.rllib.algorithms.ppo import PPOConfig
from ray.rllib.core.rl_module.default_model_config import DefaultModelConfig
from ray.rllib.utils.test_utils import add_rllib_example_script_args
from env import PartitionMazeEnv # 导入自定义环境
# 注册自定义环境
gym.envs.register(
id='PartitionMazeEnv-v0',
entry_point='env:PartitionMazeEnv',
)
parser = add_rllib_example_script_args(default_reward=450.0, default_timesteps=300000)
parser.set_defaults(enable_new_api_stack=True)
args = parser.parse_args()
config = (
PPOConfig()
.environment("PartitionMazeEnv-v0")
.training(
lr=0.0003,
num_epochs=6,
vf_loss_coeff=0.01,
)
.rl_module(
model_config=DefaultModelConfig(
fcnet_hiddens=[32],
fcnet_activation="linear",
vf_share_layers=True,
),
)
)
if __name__ == "__main__":
from ray.rllib.utils.test_utils import run_rllib_example_script_experiment
run_rllib_example_script_experiment(config, args=args)