first commit

This commit is contained in:
weixin_46229132 2025-03-06 20:44:30 +08:00
parent 1be980dd0e
commit 34725a8edf
3 changed files with 360 additions and 0 deletions

131
dqn.py Normal file
View File

@ -0,0 +1,131 @@
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from collections import deque
import random
class DQN(nn.Module):
def __init__(self, state_dim, action_dim):
super(DQN, self).__init__()
self.network = nn.Sequential(
nn.Linear(state_dim, 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, action_dim)
)
def forward(self, x):
return self.network(x)
class Agent:
def __init__(self, state_dim, action_dim):
self.state_dim = state_dim
self.action_dim = action_dim
# DQN网络
self.eval_net = DQN(state_dim, action_dim)
self.target_net = DQN(state_dim, action_dim)
self.target_net.load_state_dict(self.eval_net.state_dict())
# 训练参数
self.learning_rate = 0.001
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.memory = deque(maxlen=10000)
self.batch_size = 64
self.optimizer = optim.Adam(self.eval_net.parameters(), lr=self.learning_rate)
# 离散化动作空间
self.v_cuts_actions = [1, 2, 3, 4, 5] # 垂直切割数选项
self.h_cuts_actions = [1, 2, 3, 4, 5] # 水平切割数选项
# self.rho_actions = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] # 卸载率选项
def discretize_action(self, q_values):
"""将Q值转换为离散动作"""
action = []
# 分别为三个维度选择动作
idx = 0
# 垂直切割数
v_cuts_q = q_values[idx:idx+len(self.v_cuts_actions)]
v_cuts_idx = torch.argmax(v_cuts_q).item()
action.append(self.v_cuts_actions[v_cuts_idx])
idx += len(self.v_cuts_actions)
# 水平切割数
h_cuts_q = q_values[idx:idx+len(self.h_cuts_actions)]
h_cuts_idx = torch.argmax(h_cuts_q).item()
action.append(self.h_cuts_actions[h_cuts_idx])
idx += len(self.h_cuts_actions)
# # 卸载率
# rho_q = q_values[idx:idx+len(self.rho_actions)]
# rho_idx = torch.argmax(rho_q).item()
# action.append(self.rho_actions[rho_idx])
return np.array(action)
def get_action_dim(self):
"""获取离散化后的动作空间维度"""
return (len(self.v_cuts_actions) +
len(self.h_cuts_actions))
# len(self.rho_actions))
def choose_action(self, state):
if random.random() < self.epsilon:
# 随机选择动作
v_cuts = random.choice(self.v_cuts_actions)
h_cuts = random.choice(self.h_cuts_actions)
# rho = random.choice(self.rho_actions)
return np.array([v_cuts, h_cuts])
else:
# 根据Q值选择动作
state = torch.FloatTensor(state).unsqueeze(0)
q_values = self.eval_net(state)
return self.discretize_action(q_values[0])
def store_transition(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def learn(self):
if len(self.memory) < self.batch_size:
return
# 随机采样batch
batch = random.sample(self.memory, self.batch_size)
states = torch.FloatTensor([x[0] for x in batch])
actions = torch.FloatTensor([x[1] for x in batch])
rewards = torch.FloatTensor([x[2] for x in batch])
next_states = torch.FloatTensor([x[3] for x in batch])
dones = torch.FloatTensor([x[4] for x in batch])
# 计算当前Q值
current_q_values = self.eval_net(states)
# 计算目标Q值
next_q_values = self.target_net(next_states).detach()
max_next_q = torch.max(next_q_values, dim=1)[0]
target_q_values = rewards + (1 - dones) * self.gamma * max_next_q
# 计算损失
loss = nn.MSELoss()(current_q_values.mean(), target_q_values.mean())
# 更新网络
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# 更新epsilon
self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)
# 定期更新目标网络
if self.learn.counter % 100 == 0:
self.target_net.load_state_dict(self.eval_net.state_dict())
# 添加计数器属性
learn.counter = 0

134
env.py Normal file
View File

@ -0,0 +1,134 @@
import numpy as np
import gym
from gym import spaces
class Env(gym.Env):
"""多车-巢-机系统的区域覆盖环境"""
def __init__(self):
super(Env, self).__init__()
# 环境参数
self.H = 20 # 区域高度
self.W = 25 # 区域宽度
self.k = 1 # 系统数量
# 时间系数
self.flight_time_factor = 3 # 每张照片飞行时间
self.comp_uav_factor = 5 # 无人机计算时间
self.trans_time_factor = 0.3 # 传输时间
self.car_move_time_factor = 100 # 汽车移动时间
self.comp_bs_factor = 5 # 机巢计算时间
# 能量参数
self.flight_energy_factor = 0.05 # 飞行能耗
self.comp_energy_factor = 0.05 # 计算能耗
self.trans_energy_factor = 0.0025 # 传输能耗
self.battery_capacity = 30 # 电池容量
# 动作空间
# [垂直切割数, 水平切割数, 卸载率]
self.action_space = spaces.Box(
low=np.array([1, 1, 0]),
high=np.array([5, 5, 1]),
dtype=np.float32
)
# 状态空间
# [当前垂直切割数, 当前水平切割数, 当前最大完成时间]
self.observation_space = spaces.Box(
low=np.array([1, 1, 0]),
high=np.array([5, 5, float('inf')]),
dtype=np.float32
)
self.state = None
self.current_step = 0
self.max_steps = 1000
def step(self, action):
self.current_step += 1
# 解析动作
v_cuts = int(action[0]) # 垂直切割数
h_cuts = int(action[1]) # 水平切割数
# rho = action[2] # 卸载率
# TODO 生成切割位置,目前是均匀切割
v_boundaries = np.linspace(0, self.H, v_cuts + 1)
h_boundaries = np.linspace(0, self.W, h_cuts + 1)
# 计算每个子区域的指标
total_time = 0
valid_partition = True
for i in range(len(v_boundaries) - 1):
for j in range(len(h_boundaries) - 1):
# 计算子区域大小
height = v_boundaries[i+1] - v_boundaries[i]
width = h_boundaries[j+1] - h_boundaries[j]
area = height * width
# 求解rho
rho_time_limit = (self.flight_time_factor - self.trans_time_factor) / \
(self.comp_uav_factor - self.trans_time_factor)
rho_energy_limit = (self.battery_capacity - self.flight_energy_factor * area - self.trans_energy_factor * area) / \
(self.comp_energy_factor * area - self.trans_energy_factor * area)
if rho_energy_limit < 0:
valid_partition = False
break
rho = min(rho_time_limit, rho_energy_limit)
# 计算各阶段时间
flight_time = self.flight_time_factor * area
comp_time = self.comp_uav_factor * rho * area
trans_time = self.trans_time_factor * (1 - rho) * area
comp_bs_time = self.comp_bs_factor * (1 - rho) * area
# # 计算能耗
# flight_energy = self.flight_energy_factor * area
# comp_energy = self.comp_energy_factor * rho * area
# trans_energy = self.trans_energy_factor * (1 - rho) * area
# total_energy = flight_energy + comp_energy + trans_energy
# # 检查约束
# if total_energy > self.battery_capacity or (comp_time + trans_time > flight_time):
# valid_partition = False
# break
# 计算子区域中心到区域中心的距离
center_y = (v_boundaries[i] + v_boundaries[i+1]) / 2
center_x = (h_boundaries[j] + h_boundaries[j+1]) / 2
dist_to_center = np.sqrt(
(center_y - self.H/2)**2 + (center_x - self.W/2)**2)
car_time = dist_to_center * self.car_move_time_factor
# 更新总时间
task_time = max(flight_time + car_time, comp_bs_time)
total_time = max(total_time, task_time)
if not valid_partition:
break
# 计算奖励
if not valid_partition:
reward = -10000 # 惩罚无效方案
done = True
else:
reward = -total_time # 负的完成时间作为奖励
done = self.current_step >= self.max_steps
# 更新状态
self.state = np.array([v_cuts, h_cuts, total_time])
return self.state, reward, done, {}
def reset(self):
# 初始化状态
self.state = np.array([1, 1, 0])
self.current_step = 0
return self.state
def render(self, mode='human'):
pass

95
run_dqn.py Normal file
View File

@ -0,0 +1,95 @@
from env import Env
from dqn import Agent
import numpy as np
import matplotlib.pyplot as plt
def train():
# 创建环境和智能体
env = Env()
state_dim = env.observation_space.shape[0]
action_dim = 10 # len(垂直切割数)+len(水平切割数)
agent = Agent(state_dim, action_dim)
# 训练参数
episodes = 1000
max_steps = 1000
# 记录训练过程
rewards_history = []
best_reward = float('-inf')
best_solution = None
# 开始训练
for episode in range(episodes):
state = env.reset()
episode_reward = 0
for step in range(max_steps):
# 选择动作
action = agent.choose_action(state)
# 执行动作
next_state, reward, done, _ = env.step(action)
# 存储经验
agent.store_transition(state, action, reward, next_state, done)
# 学习
agent.learn()
episode_reward += reward
state = next_state
if done:
break
# 记录每个episode的总奖励
rewards_history.append(episode_reward)
# 更新最佳解
if episode_reward > best_reward:
best_reward = episode_reward
best_solution = {
'vertical_cuts': int(action[0]),
'horizontal_cuts': int(action[1]),
# 'offload_ratio': action[2],
'total_time': -reward if reward != -1000 else float('inf'),
'episode': episode
}
# 打印训练进度
if (episode + 1) % 10 == 0:
avg_reward = np.mean(rewards_history[-10:])
print(f"Episode {episode + 1}, Average Reward: {avg_reward:.2f}")
return best_solution, rewards_history
def plot_training_results(rewards_history):
plt.figure(figsize=(10, 5))
plt.plot(rewards_history)
plt.title('Training Progress')
plt.xlabel('Episode')
plt.ylabel('Total Reward')
plt.grid(True)
plt.show()
def print_solution(solution):
print("\n最佳解决方案:")
print(f"在第 {solution['episode']} 轮找到")
print(f"垂直切割数: {solution['vertical_cuts']}")
print(f"水平切割数: {solution['horizontal_cuts']}")
print(f"任务卸载率: {solution['offload_ratio']:.2f}")
print(f"总完成时间: {solution['total_time']:.2f}")
if __name__ == "__main__":
# 训练模型
best_solution, rewards_history = train()
# 显示结果
plot_training_results(rewards_history)
print_solution(best_solution)