每一个加一个奖励
This commit is contained in:
parent
f347ca8276
commit
3e6887c655
1
GA/ga.py
1
GA/ga.py
@ -3,6 +3,7 @@ import random
|
|||||||
|
|
||||||
# import matplotlib.pyplot as plt
|
# import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
# np.random.seed(42)
|
||||||
|
|
||||||
|
|
||||||
class GA(object):
|
class GA(object):
|
||||||
|
@ -108,12 +108,31 @@ class PartitionEnv(gym.Env):
|
|||||||
# 出现无效调整,直接结束
|
# 出现无效调整,直接结束
|
||||||
if not valid_adjust:
|
if not valid_adjust:
|
||||||
return state, reward, True, False, {}
|
return state, reward, True, False, {}
|
||||||
|
# 调整合理,计算当前时间
|
||||||
else:
|
else:
|
||||||
|
rectangles = self.if_valid_partition()
|
||||||
|
|
||||||
|
if not rectangles:
|
||||||
|
reward = -10
|
||||||
|
return state, reward, True, False, {}
|
||||||
|
else:
|
||||||
|
# 继续进行路径规划
|
||||||
|
# 使用遗传算法解多旅行商
|
||||||
|
best_time, best_path = self.ga_solver(rectangles)
|
||||||
|
# print(best_time)
|
||||||
|
# print(best_path)
|
||||||
|
|
||||||
|
reward = self.BASE_LINE / best_time
|
||||||
if self.partition_step < self.CUT_NUM:
|
if self.partition_step < self.CUT_NUM:
|
||||||
return state, 0.0, False, False, {}
|
done = False
|
||||||
else:
|
else:
|
||||||
# 完成 4 步后,判断分区是否合理,并计算各个分区的任务卸载率ρ
|
done = True
|
||||||
valid_partition = True
|
reward = reward * 3
|
||||||
|
|
||||||
|
return state, reward, done, False, best_path
|
||||||
|
|
||||||
|
def if_valid_partition(self):
|
||||||
|
rectangles = []
|
||||||
for i in range(len(self.ori_row_cuts) - 1):
|
for i in range(len(self.ori_row_cuts) - 1):
|
||||||
for j in range(len(self.ori_col_cuts) - 1):
|
for j in range(len(self.ori_col_cuts) - 1):
|
||||||
d = (self.ori_col_cuts[j+1] - self.ori_col_cuts[j]) * self.W * \
|
d = (self.ori_col_cuts[j+1] - self.ori_col_cuts[j]) * self.W * \
|
||||||
@ -125,30 +144,24 @@ class PartitionEnv(gym.Env):
|
|||||||
(self.comp_energy_factor * d -
|
(self.comp_energy_factor * d -
|
||||||
self.trans_energy_factor * d)
|
self.trans_energy_factor * d)
|
||||||
if rho_energy_limit < 0:
|
if rho_energy_limit < 0:
|
||||||
valid_partition = False
|
return []
|
||||||
break
|
|
||||||
rho = min(rho_time_limit, rho_energy_limit)
|
rho = min(rho_time_limit, rho_energy_limit)
|
||||||
|
|
||||||
flight_time = self.flight_time_factor * d
|
flight_time = self.flight_time_factor * d
|
||||||
bs_time = self.bs_time_factor * (1 - rho) * d
|
bs_time = self.bs_time_factor * (1 - rho) * d
|
||||||
|
|
||||||
self.rectangles.append({
|
rectangles.append({
|
||||||
'center': ((self.ori_row_cuts[i] + self.ori_row_cuts[i+1]) * self.H / 2, (self.ori_col_cuts[j+1] + self.ori_col_cuts[j]) * self.W / 2),
|
'center': ((self.ori_row_cuts[i] + self.ori_row_cuts[i+1]) * self.H / 2, (self.ori_col_cuts[j+1] + self.ori_col_cuts[j]) * self.W / 2),
|
||||||
'flight_time': flight_time,
|
'flight_time': flight_time,
|
||||||
'bs_time': bs_time,
|
'bs_time': bs_time,
|
||||||
})
|
})
|
||||||
if not valid_partition:
|
return rectangles
|
||||||
break
|
|
||||||
|
|
||||||
if not valid_partition:
|
# def q_learning_solver(self):
|
||||||
reward = -10
|
|
||||||
return state, reward, True, False, {}
|
|
||||||
else:
|
|
||||||
# 继续进行路径规划
|
|
||||||
# 使用q_learning解多旅行商
|
# 使用q_learning解多旅行商
|
||||||
# cities: [[x1, x2, x3...], [y1, y2, y3...]] 城市坐标
|
# cities: [[x1, x2, x3...], [y1, y2, y3...]] 城市坐标
|
||||||
# rec_center_lt = [rec_info['center']
|
# rec_center_lt = [rec_info['center']
|
||||||
# for rec_info in self.rectangles]
|
# for rec_info in rectangles]
|
||||||
# cities = np.column_stack(rec_center_lt)
|
# cities = np.column_stack(rec_center_lt)
|
||||||
# cities = np.column_stack((self.center, cities))
|
# cities = np.column_stack((self.center, cities))
|
||||||
|
|
||||||
@ -158,13 +171,13 @@ class PartitionEnv(gym.Env):
|
|||||||
# center_idx.append(cities.shape[1] - 1)
|
# center_idx.append(cities.shape[1] - 1)
|
||||||
|
|
||||||
# tsp = mTSP(params=self.params, num_cities=cities.shape[1], cities=cities, num_cars=self.num_cars,
|
# tsp = mTSP(params=self.params, num_cities=cities.shape[1], cities=cities, num_cars=self.num_cars,
|
||||||
# center_idx=center_idx, rectangles=self.rectangles)
|
# center_idx=center_idx, rectangles=rectangles)
|
||||||
|
|
||||||
# best_time, best_path = tsp.train(self.mTSP_STEPS)
|
# best_time, best_path = tsp.train(self.mTSP_STEPS)
|
||||||
|
|
||||||
# 使用遗传算法解多旅行商
|
def ga_solver(self, rectangles):
|
||||||
cities = [self.center]
|
cities = [self.center]
|
||||||
for rec in self.rectangles:
|
for rec in rectangles:
|
||||||
cities.append(rec['center'])
|
cities.append(rec['center'])
|
||||||
cities = np.array(cities)
|
cities = np.array(cities)
|
||||||
|
|
||||||
@ -174,16 +187,9 @@ class PartitionEnv(gym.Env):
|
|||||||
center_idx.append(cities.shape[0] - 1)
|
center_idx.append(cities.shape[0] - 1)
|
||||||
|
|
||||||
ga = GA(num_drones=self.num_cars, num_city=cities.shape[0], num_total=20,
|
ga = GA(num_drones=self.num_cars, num_city=cities.shape[0], num_total=20,
|
||||||
data=cities, to_process_idx=center_idx, rectangles=self.rectangles)
|
data=cities, to_process_idx=center_idx, rectangles=rectangles)
|
||||||
|
|
||||||
best_path, best_time = ga.run()
|
best_path, best_time = ga.run()
|
||||||
|
return best_time, best_path
|
||||||
# print(best_time)
|
|
||||||
# print(best_path)
|
|
||||||
|
|
||||||
reward = self.BASE_LINE / best_time
|
|
||||||
|
|
||||||
return state, reward, True, False, best_path
|
|
||||||
|
|
||||||
def render(self):
|
def render(self):
|
||||||
if self.phase == 1:
|
if self.phase == 1:
|
||||||
|
@ -10,7 +10,7 @@ print('state:', state)
|
|||||||
|
|
||||||
# action_series = [[0.67], [0], [0], [0], [0.7]]
|
# action_series = [[0.67], [0], [0], [0], [0.7]]
|
||||||
# action_series = [0, 0, 3, 0, 10]
|
# action_series = [0, 0, 3, 0, 10]
|
||||||
action_series = [[0.2], [0.4], [0.7], [0.5]]
|
# action_series = [[0.2], [0.4], [0.7], [0.5]]
|
||||||
action_series = [[-0.1], [0], [0], [0]]
|
action_series = [[-0.1], [0], [0], [0]]
|
||||||
|
|
||||||
for i in range(100):
|
for i in range(100):
|
||||||
|
Loading…
Reference in New Issue
Block a user