添加greedy算法

This commit is contained in:
weixin_46229132 2025-04-01 10:24:52 +08:00
parent 27829c5d48
commit 58952f1fdb
5 changed files with 308 additions and 236 deletions

View File

@ -3,6 +3,8 @@ import yaml
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import matplotlib.patches as patches import matplotlib.patches as patches
import numpy as np import numpy as np
import json
def calculate_max_photos_per_flight(params): def calculate_max_photos_per_flight(params):
"""计算每次飞行能拍摄的最大照片数量 """计算每次飞行能拍摄的最大照片数量
@ -21,217 +23,84 @@ def calculate_max_photos_per_flight(params):
# 基于时间约束求解rho飞行时间 = 计算时间 + 传输时间 # 基于时间约束求解rho飞行时间 = 计算时间 + 传输时间
# flight_time_factor * d = comp_time_factor * rho * d + trans_time_factor * (1-rho) * d # flight_time_factor * d = comp_time_factor * rho * d + trans_time_factor * (1-rho) * d
rho_time = (flight_time_factor - trans_time_factor) / (comp_time_factor - trans_time_factor) rho_time = (flight_time_factor - trans_time_factor) / \
(comp_time_factor - trans_time_factor)
# 基于能量约束求解最大照片数d # 基于能量约束求解最大照片数d
# battery_energy_capacity = flight_energy_factor * d + comp_energy_factor * rho * d + trans_energy_factor * (1-rho) * d # battery_energy_capacity = flight_energy_factor * d + comp_energy_factor * rho * d + trans_energy_factor * (1-rho) * d
energy_per_photo = (flight_energy_factor + energy_per_photo = (flight_energy_factor +
comp_energy_factor * rho_time + comp_energy_factor * rho_time +
trans_energy_factor * (1 - rho_time)) trans_energy_factor * (1 - rho_time))
max_photos = math.floor(battery_energy_capacity / energy_per_photo) max_photos = battery_energy_capacity / energy_per_photo
return max_photos, rho_time return max_photos
def solve_greedy(params): def solve_greedy(params):
"""使用贪心算法求解任务分配问题""" """使用贪心算法求解任务分配问题"""
H = params['H'] H = params['H']
W = params['W'] W = params['W']
k = params['num_cars'] # 系统数量 k = params['num_cars'] # 车辆数量
car_time_factor = params['car_time_factor']
bs_time_factor = params['bs_time_factor']
flight_time_factor = params['flight_time_factor']
# 计算每次飞行能拍摄的最大照片数
photos_per_flight, rho = calculate_max_photos_per_flight(params)
print(f"贪心无人机计算的情况下,每次飞行能拍摄的最大照片数: {photos_per_flight}")
print(f"卸载率 rho: {rho:.3f}")
# 用较小的边长来划分网格
min_side = min(H, W)
next_side = photos_per_flight // min_side
# 初始化任务分配列表 # 1. 首先将区域均匀切分成k行
tasks = [[] for _ in range(k)] row_ratio = 1 / k
row_boundaries = [i * row_ratio for i in range(k + 1)]
if min_side == H:
grid_h = min_side
grid_w = next_side
num_rows = 1
num_cols = round(W / grid_w)
current_col = 0 # 2. 计算每次飞行能拍摄的最大照片数量
for i in range(math.ceil(num_cols / k)): photos_per_flight = calculate_max_photos_per_flight(params)
for j in range(k): print(f"每次飞行能拍摄的最大照片数: {photos_per_flight}")
tasks[j].append((0, current_col))
current_col += 1
if current_col == num_cols:
break
else:
grid_w = min_side
grid_h = next_side
num_cols = 1
num_rows = round(H / grid_h)
current_row = 0
for i in range(math.ceil(num_rows / k)):
for j in range(k):
tasks[j].append((current_row, 0))
current_row += 1
if current_row == num_rows:
break
print(f"网格大小: {grid_w}x{grid_h}") # 3. 针对每一行计算网格划分
print(f"网格数量: {num_rows}x{num_cols}") row_start = row_boundaries[0]
print(f"任务分配情况: {tasks}") row_end = row_boundaries[1]
row_height = (row_end - row_start) * H
# 计算区域中心点
center_x = W / 2 # 计算每个网格的宽度
center_y = H / 2 # 网格面积 = row_height * grid_width = photos_per_flight
grid_width = photos_per_flight / row_height
# 为每个系统计算完成时间 col_ratio = grid_width / W
system_times = []
col_boundaries = [0]
ratio = 0
while (ratio + col_ratio) < 1:
ratio += col_ratio
col_boundaries.append(ratio)
col_boundaries.append(1)
car_paths = []
for i in range(k): for i in range(k):
if not tasks[i]: # 如果该系统没有分配任务 car_path = list(range(i * (len(col_boundaries) - 1),
system_times.append(0) (i+1) * (len(col_boundaries) - 1)))
continue car_paths.append(car_path)
# 生成该系统负责的网格中心坐标 return row_boundaries, col_boundaries, car_paths
grids = []
for row, col in tasks[i]:
if min_side == H:
# 如果H是较小边那么row=0col递增
# TODO 最后一个网格的中心点不能这么算
grid_center_x = (col + 0.5) * grid_w
grid_center_y = (row + 0.5) * grid_h
else:
# 如果W是较小边那么col=0row递增
grid_center_x = (col + 0.5) * grid_w
grid_center_y = (row + 0.5) * grid_h
grids.append((grid_center_x, grid_center_y))
# 计算车辆路径长度(从中心点出发)
car_distance = math.hypot(center_x - grids[0][0], center_y - grids[0][1]) # 从中心到第一个网格
for j in range(len(grids)-1):
car_distance += math.hypot(grids[j+1][0] - grids[j][0],
grids[j+1][1] - grids[j][1]) # 网格间距离
car_distance += math.hypot(grids[-1][0] - center_x,
grids[-1][1] - center_y) # 从最后一个网格回到中心
# 计算时间
num_photos = len(grids) * photos_per_flight # 该系统需要拍摄的总照片数
flight_time = flight_time_factor * num_photos # 飞行时间
car_time = car_time_factor * car_distance # 车辆移动时间
bs_time = bs_time_factor * (1 - rho) * num_photos # 基站计算时间
total_time = max(flight_time + car_time, bs_time)
system_times.append(total_time)
print(f"\n系统 {i} 详细信息:")
print(f"负责的网格数: {len(grids)}")
print(f"总照片数: {num_photos}")
print(f"车辆移动距离: {car_distance:.2f}")
print(f"飞行时间: {flight_time:.2f}")
print(f"车辆时间: {car_time:.2f}")
print(f"基站时间: {bs_time:.2f}")
print(f"总完成时间: {total_time:.2f}")
# 找出最大完成时间
max_time = max(system_times)
print(f"\n最大完成时间: {max_time:.2f}")
# 准备返回结果
result = {
'max_time': max_time,
'system_times': system_times,
'photos_per_flight': photos_per_flight,
'grid_w': grid_w,
'grid_h': grid_h,
'num_rows': num_rows,
'num_cols': num_cols,
'tasks': tasks,
'rho': rho
}
return result
def plot_results(params, result):
"""可视化结果"""
H = params['H']
W = params['W']
k = params['num_cars']
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
# 创建图形
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
# 1. 绘制系统完成时间对比
ax1.bar(range(k), result['system_times'])
ax1.set_title('各系统完成时间对比')
ax1.set_xlabel('系统编号')
ax1.set_ylabel('完成时间(秒)')
# 2. 绘制网格划分示意图
ax2.set_xlim(0, W)
ax2.set_ylim(0, H)
# 为不同系统的网格使用不同颜色
colors = plt.cm.rainbow(np.linspace(0, 1, k))
# 绘制网格和系统分配
grid_w = result['grid_w']
grid_h = result['grid_h']
tasks = result['tasks']
# 绘制每个系统的网格
for system_idx, system_tasks in enumerate(tasks):
for row, col in system_tasks:
rect = patches.Rectangle(
(col * grid_w, row * grid_h),
grid_w, grid_h,
linewidth=1,
edgecolor='black',
facecolor=colors[system_idx],
alpha=0.3
)
ax2.add_patch(rect)
# 在网格中心添加系统编号
center_x = (col + 0.5) * grid_w
center_y = (row + 0.5) * grid_h
ax2.text(center_x, center_y, str(system_idx),
ha='center', va='center')
# 添加中心点标记
ax2.plot(W/2, H/2, 'r*', markersize=15, label='区域中心')
ax2.legend()
ax2.set_title('网格划分和系统分配示意图')
ax2.set_xlabel('宽度')
ax2.set_ylabel('高度')
plt.tight_layout()
plt.show()
def main(): def main():
# ---------------------------
# 需要修改的超参数
# ---------------------------
params_file = 'params_50_50_3'
# 读取参数 # 读取参数
with open('params.yml', 'r', encoding='utf-8') as file: with open(params_file + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file) params = yaml.safe_load(file)
# 求解 # 求解
result = solve_greedy(params) row_boundaries, col_boundaries, car_paths = solve_greedy(params)
# 输出结果 # ---------------------------
print("\n求解结果:") # 输出最佳方案
print(f"最大完成时间: {result['max_time']:.2f}") # ---------------------------
print("\n各系统完成时间:") output_data = {
for i, time in enumerate(result['system_times']): 'row_boundaries': row_boundaries,
print(f"系统 {i}: {time:.2f}") 'col_boundaries': col_boundaries,
'car_paths': car_paths
# 可视化 }
plot_results(params, result) with open(f'./solutions/greedy_{params_file}.json', 'w', encoding='utf-8') as f:
json.dump(output_data, f, ensure_ascii=False, indent=4)
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -3,6 +3,7 @@ import math
import yaml import yaml
import json import json
import numpy as np import numpy as np
from tqdm import tqdm
# 固定随机种子,便于复现 # 固定随机种子,便于复现
random.seed(42) random.seed(42)
@ -11,7 +12,7 @@ random.seed(42)
# --------------------------- # ---------------------------
# 需要修改的超参数 # 需要修改的超参数
# --------------------------- # ---------------------------
num_iterations = 10000000000 num_iterations = 100000000
# 随机生成分区的行分段数与列分段数 # 随机生成分区的行分段数与列分段数
R = random.randint(0, 3) # 行分段数 R = random.randint(0, 3) # 行分段数
C = random.randint(0, 3) # 列分段数 C = random.randint(0, 3) # 列分段数
@ -44,7 +45,7 @@ battery_energy_capacity = params['battery_energy_capacity']
best_T = float('inf') best_T = float('inf')
best_solution = None best_solution = None
for iteration in range(num_iterations): for iteration in tqdm(range(num_iterations), desc="蒙特卡洛模拟进度"):
# 直接切值 # 直接切值
horiz = [random.random() for _ in range(R)] horiz = [random.random() for _ in range(R)]
horiz = sorted(set(horiz)) horiz = sorted(set(horiz))

View File

@ -0,0 +1,35 @@
{
"row_boundaries": [
0.0,
0.3333333333333333,
0.6666666666666666,
1.0
],
"col_boundaries": [
0,
0.3008,
0.6016,
0.9024000000000001,
1
],
"car_paths": [
[
0,
1,
2,
3
],
[
4,
5,
6,
7
],
[
8,
9,
10,
11
]
]
}

View File

@ -0,0 +1,30 @@
{
"row_boundaries": [
0.0,
0.2145965901664986,
0.4480907391063933,
0.7086202525448272,
1.0
],
"col_boundaries": [
0.0,
0.5136187465626157,
1.0
],
"car_paths": [
[
4,
2,
0
],
[
6,
7
],
[
5,
3,
1
]
]
}

View File

@ -1,59 +1,206 @@
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import matplotlib.patches as patches import matplotlib.patches as patches
import json import json
import math
def visualize_solution(row_boundaries, col_boundaries, car_paths_coords, W, H): def visualize_solution(row_boundaries, col_boundaries, car_paths_coords, W, H, rho_list):
plt.rcParams['font.family'] = ['sans-serif'] region_center = (H / 2.0, W / 2.0)
plt.rcParams['font.sans-serif'] = ['SimHei']
fig, ax = plt.subplots() # 创建正方形图像
fig, ax = plt.subplots(figsize=(8, 8)) # 设置固定的正方形大小
ax.set_xlim(0, W) ax.set_xlim(0, W)
ax.set_ylim(H, 0) # 调整y轴方向原点在左上角 ax.set_ylim(H, 0) # 调整y轴方向原点在左上角
ax.set_title("区域划分与车-机-巢系统覆盖")
ax.set_xlabel("区域宽度") # 设置英文标题和标签
ax.set_ylabel("区域高度") # ax.set_title("Monte Carlo", fontsize=12)
ax.set_title("Greedy", fontsize=12)
# ax.set_title("Enumeration-Genetic Algorithm", fontsize=12)
# ax.set_title("DQN fine-tuning", fontsize=12)
# 定义若干颜色以区分不同系统系统编号从0开始 ax.set_xlabel("Region Width", fontsize=10)
colors = ['red', 'blue', 'green', 'orange', 'purple', 'cyan', 'magenta'] ax.set_ylabel("Region Height", fontsize=10)
# 绘制区域中心 # 定义配色方案(使用更专业的配色)
region_center = (H / 2.0, W / 2.0) colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
ax.plot(region_center[1], region_center[0], '#9467bd', '#8c564b', '#e377c2', '#7f7f7f']
'ko', markersize=8, label="区域中心")
# 绘制行分割边界 # 绘制行分割边界
for row in row_boundaries: for row in row_boundaries[1:-1]:
ax.axhline(y=row * H, color='black', linestyle='--') ax.axhline(y=row * H, color='gray', linestyle='--', alpha=0.5)
# 绘制列分割边界 # 绘制列分割边界
for col in col_boundaries: for col in col_boundaries[1:-1]:
ax.axvline(x=col * W, color='black', linestyle='--') ax.axvline(x=col * W, color='gray', linestyle='--', alpha=0.5)
# 绘制每辆车的轨迹并标注区域序号 # 绘制每辆车的轨迹并标注区域序号
for system_id, path in enumerate(car_paths_coords): for system_id, path in enumerate(car_paths_coords):
path = [(region_center[0], region_center[1])] + \ path = [(region_center[0], region_center[1])] + \
path + [(region_center[0], region_center[1])] path + [(region_center[0], region_center[1])]
y, x = zip(*path) y, x = zip(*path)
ax.plot(x, y, marker='o', color=colors[int(
system_id) % len(colors)], label=f"系统 {system_id}") # 使用箭头绘制路径
for i in range(len(path)-1):
# 绘制带箭头的线段
ax.annotate('',
xy=(x[i+1], y[i+1]),
xytext=(x[i], y[i]),
arrowprops=dict(arrowstyle='->',
color=colors[int(system_id) % len(colors)],
lw=2,
mutation_scale=15),
zorder=1)
# 绘制路径点
ax.plot(x, y, 'o', markersize=6,
color=colors[int(system_id) % len(colors)],
label=f"System {system_id}",
zorder=2)
# 标注每个区域的序号 # 标注每个区域的序号(将序号向上偏移一点)
for idx, (px, py) in enumerate(zip(x[1:-1], y[1:-1])): # 跳过起点和终点 for idx, (px, py) in enumerate(zip(x[1:-1], y[1:-1])):
ax.text(px, py, str(idx), color='black', fontsize=8, ha='center', va='center') offset = H * 0.02 # 根据区域高度设置偏移量
ax.text(px, py - offset, str(idx),
color='black',
fontsize=9,
ha='center',
va='bottom',
bbox=dict(
facecolor='none',
edgecolor='none',
alpha=0.7,
pad=0.5))
# 绘制区域中心设置最高的zorder确保在最上层
ax.plot(region_center[1], region_center[0],
'k*', markersize=12, label="Region Center",
zorder=3)
# 添加图例 # 添加图例
ax.legend() ax.legend(loc='upper right', fontsize=9)
# 保持坐标轴比例相等
ax.set_aspect('equal', adjustable='box')
# 调整布局,确保所有元素都显示完整
plt.tight_layout()
# 显示网格
ax.grid(True, linestyle=':', alpha=0.3)
# 在每个矩形区域左上角标注rho值
rho_idx = 0
for i in range(len(row_boundaries) - 1):
for j in range(len(col_boundaries) - 1):
# 获取矩形左上角坐标
x = col_boundaries[j] * W
y = row_boundaries[i] * H
# 添加一个小的偏移量,避免完全贴在边界上
offset_x = W * 0.02
offset_y = H * 0.02
# 标注rho值
ax.text(x + offset_x, y + offset_y,
f'ρ={rho_list[rho_idx]:.2f}',
color='black',
fontsize=8,
ha='left',
va='top',
bbox=dict(facecolor='white',
edgecolor='none',
alpha=0.7,
pad=0.5),
zorder=2)
rho_idx += 1
plt.show() plt.show()
def restore_from_solution(row_boundaries, col_boundaries, car_paths, params):
H = params['H']
W = params['W']
k = params['num_cars']
flight_time_factor = params['flight_time_factor']
comp_time_factor = params['comp_time_factor']
trans_time_factor = params['trans_time_factor']
car_time_factor = params['car_time_factor']
bs_time_factor = params['bs_time_factor']
flight_energy_factor = params['flight_energy_factor']
comp_energy_factor = params['comp_energy_factor']
trans_energy_factor = params['trans_energy_factor']
battery_energy_capacity = params['battery_energy_capacity']
rectangles = []
for i in range(len(row_boundaries) - 1):
for j in range(len(col_boundaries) - 1):
r1 = row_boundaries[i]
r2 = row_boundaries[i + 1]
c1 = col_boundaries[j]
c2 = col_boundaries[j + 1]
d = (r2 - r1) * H * (c2 - c1) * W # 任务的照片数量(矩形面积)
# 求解rho
rho_time_limit = (flight_time_factor - trans_time_factor) / \
(comp_time_factor - trans_time_factor)
rho_energy_limit = (battery_energy_capacity - flight_energy_factor * d - trans_energy_factor * d) / \
(comp_energy_factor * d - trans_energy_factor * d)
rho = min(rho_time_limit, rho_energy_limit)
flight_time = flight_time_factor * d
comp_time = comp_time_factor * rho * d
trans_time = trans_time_factor * (1 - rho) * d
bs_time = bs_time_factor * (1 - rho) * d
# 计算任务矩形中心,用于后续车辆移动时间计算
center_r = (r1 + r2) / 2.0 * H
center_c = (c1 + c2) / 2.0 * W
rectangles.append({
'rho': rho,
'flight_time': flight_time,
'bs_time': bs_time,
'center': (center_r, center_c)
})
system_times = []
# 根据car_paths计算时间
for car_idx in range(k):
car_path = car_paths[car_idx]
flight_time = sum(rectangles[point]['flight_time']
for point in car_path)
bs_time = sum(rectangles[point]['bs_time'] for point in car_path)
# 计算车的移动时间,首先在轨迹的首尾添加上大区域中心
car_time = 0
for i in range(len(car_path) - 1):
first_point = car_path[i]
second_point = car_path[i + 1]
car_time += math.dist(rectangles[first_point]['center'], rectangles[second_point]['center']) * \
car_time_factor
car_time += math.dist(rectangles[car_path[0]]
['center'], [H / 2, W / 2]) * car_time_factor
car_time += math.dist(rectangles[car_path[-1]]
['center'], [H / 2, W / 2]) * car_time_factor
system_time = max(flight_time + car_time, bs_time)
system_times.append(system_time)
print(f"系统{car_idx}的总时间: {system_time}")
print(f"最终时间: {max(system_times)}")
rho_list = [rectangle['rho'] for rectangle in rectangles]
return rectangles, rho_list
if __name__ == "__main__": if __name__ == "__main__":
import yaml import yaml
# --------------------------- # ---------------------------
# 需要修改的超参数 # 需要修改的超参数
# --------------------------- # ---------------------------
params_file = 'params3' params_file = 'params_50_50_3'
solution_file = r'solutions\trav_ga_params3_parallel.json' solution_file = r'solutions\greedy_params_50_50_3.json'
with open(params_file + '.yml', 'r', encoding='utf-8') as file: with open(params_file + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file) params = yaml.safe_load(file)
@ -70,27 +217,17 @@ if __name__ == "__main__":
col_boundaries = best_solution['col_boundaries'] col_boundaries = best_solution['col_boundaries']
car_paths = best_solution['car_paths'] car_paths = best_solution['car_paths']
rectangles, rho_list = restore_from_solution(
row_boundaries, col_boundaries, car_paths, params)
# 计算分块区域的中心点坐标 # 计算分块区域的中心点坐标
rectangle_centers = [] rectangles_centers = [rectangle['center'] for rectangle in rectangles]
for i in range(len(row_boundaries) - 1):
for j in range(len(col_boundaries) - 1):
r1 = row_boundaries[i]
r2 = row_boundaries[i + 1]
c1 = col_boundaries[j]
c2 = col_boundaries[j + 1]
d = (r2 - r1) * H * (c2 - c1) * W # 任务的照片数量(矩形面积)
# 计算任务矩形中心,用于后续车辆移动时间计算
center_r = (r1 + r2) / 2.0 * H
center_c = (c1 + c2) / 2.0 * W
rectangle_centers.append((center_r, center_c))
# 将car_paths里的index换成坐标 # 将car_paths里的index换成坐标
car_paths_coords = [[] for _ in range(k)] car_paths_coords = [[] for _ in range(k)]
for car_idx in range(k): for car_idx in range(k):
car_path = car_paths[car_idx] car_path = car_paths[car_idx]
for point in car_path: for point in car_path:
car_paths_coords[car_idx].append(rectangle_centers[point]) car_paths_coords[car_idx].append(rectangles_centers[point])
visualize_solution(row_boundaries, col_boundaries, car_paths_coords, W, H) visualize_solution(row_boundaries, col_boundaries, car_paths_coords, W, H, rho_list)