修改蒙特卡洛的输出

This commit is contained in:
weixin_46229132 2025-03-24 16:11:38 +08:00
parent 9599215e2e
commit 61be8ad37c
2 changed files with 28 additions and 48 deletions

View File

@ -45,13 +45,15 @@ for iteration in range(num_iterations):
C = 1 C = 1
# 生成随机的行、列分割边界 # 生成随机的行、列分割边界
horiz = [np.clip(np.floor(random.random() * 10) /10, 0.0, 0.9) for _ in range(R)] horiz = [np.clip(np.floor(random.random() * 10) / 10, 0.0, 0.9)
for _ in range(R)]
horiz = sorted(set(horiz)) horiz = sorted(set(horiz))
horiz = horiz if horiz else [] horiz = horiz if horiz else []
row_boundaries = [0] + horiz + [1] row_boundaries = [0] + horiz + [1]
row_boundaries = [boundary * H for boundary in row_boundaries] row_boundaries = [boundary * H for boundary in row_boundaries]
vert = [np.clip(np.floor(random.random() * 10) /10, 0.0, 0.9) for _ in range(C)] vert = [np.clip(np.floor(random.random() * 10) / 10, 0.0, 0.9)
for _ in range(C)]
vert = sorted(set(vert)) vert = sorted(set(vert))
vert = vert if vert else [] vert = vert if vert else []
col_boundaries = [0] + vert + [1] col_boundaries = [0] + vert + [1]
@ -108,10 +110,11 @@ for iteration in range(num_iterations):
# --------------------------- # ---------------------------
# 随机将所有矩形任务分配给 k 个系统(车-机-巢) # 随机将所有矩形任务分配给 k 个系统(车-机-巢)
# --------------------------- # ---------------------------
system_tasks = {i: [] for i in range(k)} car_paths = [[] for _ in range(k)]
for rect in rectangles: for i in range(len(row_boundaries) - 1):
system = random.randint(0, k - 1) for j in range(len(col_boundaries) - 1):
system_tasks[system].append(rect) car_idx = random.randint(0, k - 1)
car_paths[car_idx].append(i * (len(col_boundaries) - 1) + j)
# --------------------------- # ---------------------------
# 对于每个系统,计算该系统的总完成时间 T_k # 对于每个系统,计算该系统的总完成时间 T_k
@ -121,18 +124,19 @@ for iteration in range(num_iterations):
region_center = (H / 2.0, W / 2.0) region_center = (H / 2.0, W / 2.0)
T_k_list = [] T_k_list = []
for i in range(k): for i in range(k):
tasks = system_tasks[i] car_path = car_paths[i]
tasks.sort(key=lambda r: math.hypot(r['center'][0] - region_center[0], car_path.sort(key=lambda r: math.dist(
r['center'][1] - region_center[1])) rectangles[r]['center'], region_center))
total_flight_time = sum(task['flight_time'] for task in tasks) total_flight_time = sum(
if tasks: rectangles[point]['flight_time'] for point in car_path)
if car_path:
# 车辆从区域中心到第一个任务中心 # 车辆从区域中心到第一个任务中心
car_time = math.dist(tasks[0]['center'], car_time = math.dist(rectangles[car_path[0]]['center'],
region_center) * car_time_factor region_center) * car_time_factor
# 依次经过任务中心 # 依次经过任务中心
for j in range(len(tasks) - 1): for j in range(len(car_path) - 1):
prev_center = tasks[j]['center'] prev_center = rectangles[car_path[j]]['center']
curr_center = tasks[j + 1]['center'] curr_center = rectangles[car_path[j + 1]]['center']
car_time += math.dist(curr_center, car_time += math.dist(curr_center,
prev_center) * car_time_factor prev_center) * car_time_factor
# 回到区域中心 # 回到区域中心
@ -141,7 +145,7 @@ for iteration in range(num_iterations):
car_time = 0 car_time = 0
# 机巢的计算时间 # 机巢的计算时间
total_bs_time = sum(task['bs_time'] for task in tasks) total_bs_time = sum(rectangles[point]['bs_time'] for point in car_path)
T_k = max(total_flight_time + car_time, total_bs_time) T_k = max(total_flight_time + car_time, total_bs_time)
T_k_list.append(T_k) T_k_list.append(T_k)
@ -152,7 +156,7 @@ for iteration in range(num_iterations):
if T_max < best_T: if T_max < best_T:
best_T = T_max best_T = T_max
best_solution = { best_solution = {
'system_tasks': system_tasks, 'car_paths': car_paths,
'T_k_list': T_k_list, 'T_k_list': T_k_list,
'T_max': T_max, 'T_max': T_max,
'iteration': iteration, 'iteration': iteration,
@ -169,40 +173,14 @@ for iteration in range(num_iterations):
# 输出最佳方案 # 输出最佳方案
# --------------------------- # ---------------------------
if best_solution is not None: if best_solution is not None:
print("最佳 T (各系统中最长的完成时间):", best_solution['T_max']) print("最佳 T:", best_solution['T_max'])
print(best_solution['iteration'], "次模拟后找到最佳方案:") print("最佳路径:", best_solution['car_paths'])
print("分区情况:")
print("行分段数:", best_solution['R'])
print("列分段数:", best_solution['C'])
print("行分割边界:", best_solution['row_boundaries'])
print("列分割边界:", best_solution['col_boundaries'])
print("每辆车的运行轨迹情况:")
car_paths = []
for i in range(k):
num_tasks = len(best_solution['system_tasks'][i])
print(
f"系统 {i}: 完成时间 T = {best_solution['T_k_list'][i]}, 飞行任务数量: {num_tasks}")
tasks = best_solution['system_tasks'][i]
tasks.sort(key=lambda r: math.hypot(r['center'][0] - region_center[0],
r['center'][1] - region_center[1]))
if tasks:
print(
f"轨迹路线: 区域中心({region_center[0]:.1f}, {region_center[1]:.1f})", end="")
current_pos = region_center
car_path = []
for j, task in enumerate(tasks, 1):
current_pos = task['center']
car_path.append(current_pos)
print(
f" -> 任务{j}({current_pos[0]:.1f}, {current_pos[1]:.1f})", end="")
print(" -> 区域中心")
car_paths.append(car_path)
# 保存分区边界和车辆轨迹到JSON文件 # 保存分区边界和车辆轨迹到JSON文件
output_data = { output_data = {
'row_boundaries': [boundary / H for boundary in best_solution['row_boundaries']], 'row_boundaries': [boundary / H for boundary in best_solution['row_boundaries']],
'col_boundaries': [boundary / W for boundary in best_solution['col_boundaries']], 'col_boundaries': [boundary / W for boundary in best_solution['col_boundaries']],
'car_paths': car_paths 'car_paths': best_solution['car_paths']
} }
with open(f'./solutions/mtkl_{params_file}.json', 'w', encoding='utf-8') as f: with open(f'./solutions/mtkl_{params_file}.json', 'w', encoding='utf-8') as f:
json.dump(output_data, f, ensure_ascii=False, indent=4) json.dump(output_data, f, ensure_ascii=False, indent=4)

View File

@ -11,10 +11,12 @@
], ],
"car_paths": [ "car_paths": [
[ [
0, 2 0,
2
], ],
[ [
1, 3 1,
3
] ]
] ]
} }