改成50_50_3场景

This commit is contained in:
weixin_46229132 2025-04-12 22:55:01 +08:00
parent d64ec83042
commit 6a82010112
11 changed files with 423 additions and 138 deletions

View File

@ -10,7 +10,7 @@ import torch
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from env_partion_dist import PartitionEnv
from env_partion_dist1 import PartitionEnv
# fmt: on
'''Hyperparameter Setting'''

View File

@ -47,7 +47,7 @@ def save_best_solution(info_lt):
# 读取已有的最优解
try:
with open('solutions/dqn_params_100_100_6.json', 'r') as f:
with open('solutions/dqn_params_50_50_3.json', 'r') as f:
saved_solution = json.load(f)
saved_time = saved_solution['best_time']
except FileNotFoundError:

View File

@ -16,7 +16,7 @@ class GA(object):
self.location = data
self.to_process_idx = to_process_idx
self.rectangles = rectangles
self.epochs = 1000
self.epochs = 500
self.ga_choose_ratio = 0.2
self.mutate_ratio = 0.05
# fruits中存每一个个体是下标的list
@ -314,7 +314,7 @@ class GA(object):
early_stop_cnt = 0
else:
early_stop_cnt += 1
if early_stop_cnt == 100: # 若连续50次没有性能提升则早停
if early_stop_cnt == 150: # 若连续50次没有性能提升则早停
break
self.best_record.append(1.0 / best_score)
best_length = 1.0 / best_score

93
GA/use_ga.py Normal file
View File

@ -0,0 +1,93 @@
import random
import math
import yaml
import numpy as np
from utils import if_valid_partition, GA_solver
from itertools import product, combinations
import json
from tqdm import tqdm
np.random.seed(42)
random.seed(42)
best_T = float('inf')
best_solution = None
best_row_boundaries = None
best_col_boundaries = None
# ---------------------------
# 需要修改的超参数
# ---------------------------
params_file = 'params_50_50_3'
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)
H = params['H']
W = params['W']
k = params['num_cars']
flight_time_factor = params['flight_time_factor']
comp_time_factor = params['comp_time_factor']
trans_time_factor = params['trans_time_factor']
car_time_factor = params['car_time_factor']
bs_time_factor = params['bs_time_factor']
flight_energy_factor = params['flight_energy_factor']
comp_energy_factor = params['comp_energy_factor']
trans_energy_factor = params['trans_energy_factor']
battery_energy_capacity = params['battery_energy_capacity']
# # 定义数字列表
# numbers = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
row_cuts_set = [[0.3, 0.48, 0.77]]
col_cuts_set = [[0.5]]
for row_cuts in row_cuts_set:
for col_cuts in col_cuts_set:
row_boundaries = [0.0] + list(row_cuts) + [1.0]
col_boundaries = [0.0] + list(col_cuts) + [1.0]
# 这里面的距离不再是比例,而是真实距离!
rectrangles = if_valid_partition(
row_boundaries, col_boundaries, params)
if not rectrangles:
continue
else:
# 使用遗传算法求出每一种网格划分的可行解,然后选择其中的最优解
current_solution, current_time, to_process_idx = GA_solver(
rectrangles, params)
if current_time < best_T:
best_T = current_time
best_solution = current_solution
best_row_boundaries = row_boundaries
best_col_boundaries = col_boundaries
# 将best_solution分解成每个车队的路径
found_start_points_indices = []
for i in range(len(best_solution)):
if best_solution[i] in to_process_idx:
found_start_points_indices.append(i)
car_paths = []
for j in range(len(found_start_points_indices) - 1):
from_index = found_start_points_indices[j]
end_index = found_start_points_indices[j + 1]
car_path = []
for k in range(from_index, end_index + 1):
rectrangle_idx = best_solution[k]
if rectrangle_idx not in to_process_idx:
car_path.append(rectrangle_idx - 1)
if car_path:
car_paths.append(car_path)
# 输出最佳方案
print("Best solution:", best_solution)
print("Time:", best_T)
print("Row boundaries:", best_row_boundaries)
print("Col boundaries:", best_col_boundaries)
print("Car Paths:", car_paths)

View File

@ -1,5 +1,6 @@
import numpy as np
from ga import GA
import matplotlib.pyplot as plt
def if_valid_partition(row_boundaries, col_boundaries, params):
@ -91,4 +92,10 @@ def GA_solver(rectangles, params):
if Best_path[-1] not in to_process_idx:
Best_path.append(0)
# iterations = model.iter_x
# best_record = model.iter_y
# plt.plot(iterations, best_record)
# plt.show()
return Best_path, Best, to_process_idx

View File

@ -73,37 +73,37 @@ class PartitionEnv(gym.Env):
return state
def step(self, action):
# if action == 1:
# self.row_cuts[1] += 0.01
# elif action == 2:
# self.row_cuts[1] -= 0.01
# elif action == 3:
# self.row_cuts[2] += 0.01
# elif action == 4:
# self.row_cuts[2] -= 0.01
# elif action == 5:
# self.row_cuts[3] += 0.01
# elif action == 6:
# self.row_cuts[3] -= 0.01
# elif action == 7:
# self.col_cuts[1] += 0.01
# elif action == 8:
# self.col_cuts[1] -= 0.01
# elif action == 0:
# pass
cut_index, signal = (action + 1) // 2, (action + 1) % 2
if action == 0:
if action == 1:
self.row_cuts[1] += 0.01
elif action == 2:
self.row_cuts[1] -= 0.01
elif action == 3:
self.row_cuts[2] += 0.01
elif action == 4:
self.row_cuts[2] -= 0.01
elif action == 5:
self.row_cuts[3] += 0.01
elif action == 6:
self.row_cuts[3] -= 0.01
elif action == 7:
self.col_cuts[1] += 0.01
elif action == 8:
self.col_cuts[1] -= 0.01
elif action == 0:
pass
elif cut_index <= 5:
if signal == 0:
self.col_cuts[cut_index] += 0.005
else:
self.col_cuts[cut_index] -= 0.005
else:
if signal == 0:
self.col_cuts[cut_index-4] += 0.005
else:
self.col_cuts[cut_index-4] -= 0.005
# cut_index, signal = (action + 1) // 2, (action + 1) % 2
# if action == 0:
# pass
# elif cut_index <= 5:
# if signal == 0:
# self.col_cuts[cut_index] += 0.005
# else:
# self.col_cuts[cut_index] -= 0.005
# else:
# if signal == 0:
# self.col_cuts[cut_index-4] += 0.005
# else:
# self.col_cuts[cut_index-4] -= 0.005
# 检查row_cuts和col_cuts是否按升序排列
if (all(self.row_cuts[i] < self.row_cuts[i+1] for i in range(len(self.row_cuts)-1)) and
@ -115,16 +115,16 @@ class PartitionEnv(gym.Env):
# 不满足条件,时间给一个很大的值
best_time = self.BASE_LINE * 2
else:
# # 满足条件,继续进行路径规划
# # 每隔10步计算一次路径第一次也需要计算路径记录最佳路径
# if self.adjust_step % 10 == 0 or self.adjust_step == 1 or self.best_path is None:
# best_time, self.best_path = self.ga_solver(rectangles)
# else:
# # 根据最佳路径计算当前时间
# best_time = self.get_best_time(self.best_path, rectangles)
self.best_path = [33, 30, 29, 28, 27, 21, 15, 0, 13, 7, 1, 2, 31, 14, 8, 3, 4,
10, 32, 23, 22, 24, 18, 17, 16, 35, 9, 12, 6, 5, 11, 34, 20, 25, 26, 19, 0]
best_time = self.get_best_time(self.best_path, rectangles)
# 满足条件,继续进行路径规划
# 每隔10步计算一次路径第一次也需要计算路径记录最佳路径
if self.adjust_step % 10 == 0 or self.best_path is None:
best_time, self.best_path = self.ga_solver(rectangles)
else:
# 根据最佳路径计算当前时间
best_time = self.get_best_time(self.best_path, rectangles)
# self.best_path = [33, 30, 29, 28, 27, 21, 15, 0, 13, 7, 1, 2, 31, 14, 8, 3, 4,
# 10, 32, 23, 22, 24, 18, 17, 16, 35, 9, 12, 6, 5, 11, 34, 20, 25, 26, 19, 0]
# best_time = self.get_best_time(self.best_path, rectangles)
else:
# 调整不合法,时间给一个很大的值

275
env_partion_dist1.py Normal file
View File

@ -0,0 +1,275 @@
import gymnasium as gym
from gymnasium import spaces
import numpy as np
import yaml
import math
from mTSP_solver import mTSP
from GA.ga import GA
class PartitionEnv(gym.Env):
"""
自定义环境分为两阶段
区域切分每一次切分都是(0, 1)之间的连续值
"""
def __init__(self, config=None):
super(PartitionEnv, self).__init__()
##############################
# 可能需要手动修改的超参数
##############################
self.params = 'params_50_50_3'
self.ORI_ROW_CUTS = [0, 0.1, 0.4, 0.7, 1]
self.ORI_COL_CUTS = [0, 0.5, 1]
self.CUT_NUM = 4
self.BASE_LINE = 9051.163
self.MAX_ADJUST_STEP = 50
# self.ADJUST_THRESHOLD = 0.1
# self.mTSP_STEPS = 10000
# 切分位置+/-0.01
self.action_space = spaces.Discrete(self.CUT_NUM*2 + 1)
# 定义观察空间为8维向量
self.observation_space = spaces.Box(
low=0.0, high=1.0, shape=(len(self.ORI_ROW_CUTS)+len(self.ORI_COL_CUTS),), dtype=np.float32)
self.row_cuts = self.ORI_ROW_CUTS[:]
self.col_cuts = self.ORI_COL_CUTS[:]
self.rectangles = []
self.adjust_step = 0
self.best_path = None
# 车队参数设置
with open(self.params + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)
self.H = params['H']
self.W = params['W']
self.center = (self.H/2, self.W/2)
self.num_cars = params['num_cars']
self.flight_time_factor = params['flight_time_factor']
self.comp_time_factor = params['comp_time_factor']
self.trans_time_factor = params['trans_time_factor']
self.car_time_factor = params['car_time_factor']
self.bs_time_factor = params['bs_time_factor']
self.flight_energy_factor = params['flight_energy_factor']
self.comp_energy_factor = params['comp_energy_factor']
self.trans_energy_factor = params['trans_energy_factor']
self.battery_energy_capacity = params['battery_energy_capacity']
def reset(self, seed=None, options=None):
# 重置所有变量回到切分阶段phase 0
self.row_cuts = self.ORI_ROW_CUTS[:]
self.col_cuts = self.ORI_COL_CUTS[:]
self.rectangles = []
self.adjust_step = 0
self.best_path = None
# 状态:前 4 维为 partition_values其余为区域访问状态初始全0
state = np.array(self.row_cuts + self.col_cuts)
return state
def step(self, action):
if action == 1:
self.row_cuts[1] += 0.01
elif action == 2:
self.row_cuts[1] -= 0.01
elif action == 3:
self.row_cuts[2] += 0.01
elif action == 4:
self.row_cuts[2] -= 0.01
elif action == 5:
self.row_cuts[3] += 0.01
elif action == 6:
self.row_cuts[3] -= 0.01
elif action == 7:
self.col_cuts[1] += 0.01
elif action == 8:
self.col_cuts[1] -= 0.01
elif action == 0:
pass
# cut_index, signal = (action + 1) // 2, (action + 1) % 2
# if action == 0:
# pass
# elif cut_index <= 5:
# if signal == 0:
# self.col_cuts[cut_index] += 0.005
# else:
# self.col_cuts[cut_index] -= 0.005
# else:
# if signal == 0:
# self.col_cuts[cut_index-4] += 0.005
# else:
# self.col_cuts[cut_index-4] -= 0.005
# 检查row_cuts和col_cuts是否按升序排列
if (all(self.row_cuts[i] < self.row_cuts[i+1] for i in range(len(self.row_cuts)-1)) and
all(self.col_cuts[i] < self.col_cuts[i+1] for i in range(len(self.col_cuts)-1))):
# 调整是合法的,验证分区情况是否满足条件
rectangles = self.if_valid_partition()
if not rectangles:
# 不满足条件,时间给一个很大的值
best_time = self.BASE_LINE * 2
else:
# 满足条件,继续进行路径规划
# 每隔10步计算一次路径第一次也需要计算路径记录最佳路径
if self.adjust_step % 10 == 0 or self.best_path is None:
best_time, self.best_path = self.ga_solver(rectangles)
else:
# 根据最佳路径计算当前时间
best_time = self.get_best_time(self.best_path, rectangles)
# self.best_path = [33, 30, 29, 28, 27, 21, 15, 0, 13, 7, 1, 2, 31, 14, 8, 3, 4,
# 10, 32, 23, 22, 24, 18, 17, 16, 35, 9, 12, 6, 5, 11, 34, 20, 25, 26, 19, 0]
# best_time = self.get_best_time(self.best_path, rectangles)
else:
# 调整不合法,时间给一个很大的值
best_time = self.BASE_LINE * 2
reward = self.calc_reward(best_time)
self.adjust_step += 1
state = np.array(self.row_cuts + self.col_cuts)
info = {'row_cuts': self.row_cuts, 'col_cuts': self.col_cuts,
'best_path': self.best_path, 'best_time': best_time}
if self.adjust_step < self.MAX_ADJUST_STEP:
return state, reward, False, False, info
else:
return state, reward, True, False, info
def if_valid_partition(self):
rectangles = []
for i in range(len(self.row_cuts) - 1):
for j in range(len(self.col_cuts) - 1):
d = (self.col_cuts[j+1] - self.col_cuts[j]) * self.W * \
(self.row_cuts[i+1] -
self.row_cuts[i]) * self.H
rho_time_limit = (self.flight_time_factor - self.trans_time_factor) / \
(self.comp_time_factor - self.trans_time_factor)
rho_energy_limit = (self.battery_energy_capacity - self.flight_energy_factor * d - self.trans_energy_factor * d) / \
(self.comp_energy_factor * d -
self.trans_energy_factor * d)
if rho_energy_limit < 0:
return []
rho = min(rho_time_limit, rho_energy_limit)
flight_time = self.flight_time_factor * d
bs_time = self.bs_time_factor * (1 - rho) * d
rectangles.append({
'center': ((self.row_cuts[i] + self.row_cuts[i+1]) * self.H / 2, (self.col_cuts[j+1] + self.col_cuts[j]) * self.W / 2),
'flight_time': flight_time,
'bs_time': bs_time,
})
return rectangles
def check_adjustment_threshold(self, threshold=0.1):
"""
检查当前切分位置与原始切分位置的差异是否超过阈值
Args:
threshold (float): 允许的最大调整幅度
Returns:
bool: 如果任何切分位置的调整超过阈值返回True
"""
# 检查行切分位置
delta = 0
for i in range(len(self.row_cuts)):
delta += abs(self.row_cuts[i] - self.ORI_ROW_CUTS[i])
# 检查列切分位置
for i in range(len(self.col_cuts)):
delta += abs(self.col_cuts[i] - self.ORI_COL_CUTS[i])
if delta > threshold:
return True
return False
# def q_learning_solver(self):
# 使用q_learning解多旅行商
# cities: [[x1, x2, x3...], [y1, y2, y3...]] 城市坐标
# rec_center_lt = [rec_info['center']
# for rec_info in rectangles]
# cities = np.column_stack(rec_center_lt)
# cities = np.column_stack((self.center, cities))
# center_idx = []
# for i in range(self.num_cars - 1):
# cities = np.column_stack((cities, self.center))
# center_idx.append(cities.shape[1] - 1)
# tsp = mTSP(params=self.params, num_cities=cities.shape[1], cities=cities, num_cars=self.num_cars,
# center_idx=center_idx, rectangles=rectangles)
# best_time, best_path = tsp.train(self.mTSP_STEPS)
def ga_solver(self, rectangles):
cities = [self.center]
for rec in rectangles:
cities.append(rec['center'])
cities = np.array(cities)
center_idx = [0]
for i in range(self.num_cars - 1):
cities = np.row_stack((cities, self.center))
center_idx.append(cities.shape[0] - 1)
ga = GA(num_drones=self.num_cars, num_city=cities.shape[0], num_total=20,
data=cities, to_process_idx=center_idx, rectangles=rectangles)
best_path, best_time = ga.run()
return best_time, best_path
def get_best_time(self, best_path, rectangles):
cities = [self.center]
for rec in rectangles:
cities.append(rec['center'])
cities = np.array(cities)
center_idx = [0]
for i in range(self.num_cars - 1):
cities = np.row_stack((cities, self.center))
center_idx.append(cities.shape[0] - 1)
ga = GA(num_drones=self.num_cars, num_city=cities.shape[0], num_total=20,
data=cities, to_process_idx=center_idx, rectangles=rectangles)
best_time = ga.compute_pathlen(best_path)
return best_time
def calc_reward(self, best_time):
"""
计算奖励
1. 如果时间小于基准线给予正奖励
2. 如果时间大于基准线给予负奖励
3. 保持归一化和折扣因子
Args:
best_time (float): 当前路径的时间
Returns:
float: 计算得到的奖励值
"""
time_diff = self.BASE_LINE - best_time
# 使用tanh归一化确保time_diff=0时normalized_diff=0
# tanh在变量值为2时就非常接近1了。最大的time_diff为400
normalized_diff = np.tanh(time_diff / 200) # 20是缩放因子可调整
# 计算最终奖励
reward = normalized_diff
# * step_weight # 10是缩放因子
return reward
def render(self):
if self.phase == 1:
print("Phase 1: Initialize maze environment.")
print(f"Partition values so far: {self.partition_values}")
print(f"Motorcade positon: {self.car_pos}")
# input('1111')
elif self.phase == 2:
print("Phase 2: Play maze.")
print(f'Motorcade trajectory: {self.car_traj}')
# input('2222')

View File

@ -1,6 +1,6 @@
# from env import PartitionMazeEnv
# from env_dis import PartitionMazeEnv
from env_partion_dist import PartitionEnv
from env_partion_dist1 import PartitionEnv
# env = PartitionMazeEnv()
env = PartitionEnv()
@ -13,7 +13,7 @@ print('state:', state)
# action_series = [1] * 30
# action_series = [[0.2], [0.4], [0.7], [0.5]]
# action_series = [[-0.08], [-0.08], [0], [0]]
action_series = list(range(11))
action_series = list(range(9))
for i in range(100):
action = action_series[i]

View File

@ -1,60 +0,0 @@
{
"best_time": 19376.05694186515,
"row_cuts": [
0,
0.2800000000000001,
0.43000000000000005,
0.62,
0.77,
1
],
"col_cuts": [
0,
0.2,
0.4,
0.5,
0.7,
0.8,
1
],
"best_path": [
33,
30,
29,
28,
27,
21,
15,
0,
13,
7,
1,
2,
31,
14,
8,
3,
4,
10,
32,
23,
22,
24,
18,
17,
16,
35,
9,
12,
6,
5,
11,
34,
20,
25,
26,
19,
0
],
"timestamp": "2025-04-06 09:10:53"
}

View File

@ -1,30 +0,0 @@
{
"best_time": 8820.015746422654,
"row_cuts": [
0,
0.2900000000000001,
0.4700000000000001,
0.77,
1
],
"col_cuts": [
0,
0.5,
1
],
"best_path": [
0,
1,
3,
5,
9,
7,
8,
10,
2,
4,
6,
0
],
"timestamp": "2025-04-03 10:58:44"
}

View File

@ -199,8 +199,8 @@ if __name__ == "__main__":
# ---------------------------
# 需要修改的超参数
# ---------------------------
params_file = 'params_100_100_6'
solution_file = r'solutions\finetune_params_100_100_6.json'
params_file = 'params_50_50_3'
solution_file = r'solutions\dqn_params_100_100_6.json'
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)