加入q learning

This commit is contained in:
weixin_46229132 2025-03-27 20:50:46 +08:00
parent 6f44d142bc
commit 6f8fcd15b7
10 changed files with 339 additions and 26 deletions

View File

@ -20,7 +20,7 @@ best_col_boundaries = None
# ---------------------------
R = 3
C = 3
params_file = 'params3'
params_file = 'params2'
with open(params_file + '.yml', 'r', encoding='utf-8') as file:

View File

@ -30,9 +30,9 @@ if __name__ == "__main__": # 重要:在 Windows 上必须加这一行
# ---------------------------
# 需要修改的超参数
# ---------------------------
R = 1
C = 1
params_file = 'params3'
R = 3
C = 3
params_file = 'params2'
batch_size = 60 # 控制一次最多并行多少个任务
with open(params_file + '.yml', 'r', encoding='utf-8') as file:

View File

@ -16,7 +16,8 @@ class SA_FineTuner:
:param cooling_rate: 温度下降速率
"""
# 读取参数
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
self.params_file = params_file
with open(self.params_file + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)
self.H = params['H']
@ -92,6 +93,21 @@ class SA_FineTuner:
acceptance_probability = math.exp(-delta / temperature)
return random.random() < acceptance_probability
def save_best_solution(self, row_cuts, col_cuts, car_paths):
"""
保存最佳方案
:param row_cuts: 行切分比例
:param col_cuts: 列切分比例
:param car_paths: 车队路径
"""
output_data = {
'row_boundaries': row_cuts,
'col_boundaries': col_cuts,
'car_paths': car_paths
}
with open(f'./solutions/finetune_{self.params_file}.json', 'w', encoding='utf-8') as file:
json.dump(output_data, file, ensure_ascii=False, indent=4)
def T_function(self, row_cuts, col_cuts):
"""
计算切分比例的目标值 T占位函数
@ -182,6 +198,9 @@ class SA_FineTuner:
print(
f"Iteration {iteration}: Best T = {self.best_T}, Temperature = {self.temperature}")
# 保存最佳方案
self.save_best_solution(self.best_row_cuts, self.best_col_cuts, self.car_paths)
return self.best_row_cuts, self.best_col_cuts, self.best_T
@ -206,7 +225,7 @@ if __name__ == "__main__":
# ---------------------------
# 需要修改的超参数
# ---------------------------
solution_path = r"solutions\mtkl_params2.json"
solution_path = r"solutions\trav_ga_params2_parallel.json"
params_file = r"params2"
max_iterations=10000
initial_temp=100

234
Q_learning/q_table.py Normal file
View File

@ -0,0 +1,234 @@
import random
import numpy as np
import json
import math
import yaml
# 参数设置
STEP = 0.01
VALUES = [round(i*STEP, 2) for i in range(101)] # 0.00~1.00
ACTION_DELTA = [STEP, -STEP] # 增加或减少 0.01
ACTIONS = [] # 每个动作为 (var_index, delta)
for i in range(3):
for delta in ACTION_DELTA:
ACTIONS.append((i, delta))
ALPHA = 0.1 # 学习率
GAMMA = 0.9 # 折扣因子
EPSILON = 0.2 # 探索率
NUM_EPISODES = 100
def f(state):
"""
计算切分比例的目标值 T占位函数
:param row_cuts: 行切分比例
:param col_cuts: 列切分比例
:return: 目标值 T
"""
with open('params2.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)
H = params['H']
W = params['W']
num_cars = params['num_cars']
flight_time_factor = params['flight_time_factor']
comp_time_factor = params['comp_time_factor']
trans_time_factor = params['trans_time_factor']
car_time_factor = params['car_time_factor']
bs_time_factor = params['bs_time_factor']
flight_energy_factor = params['flight_energy_factor']
comp_energy_factor = params['comp_energy_factor']
trans_energy_factor = params['trans_energy_factor']
battery_energy_capacity = params['battery_energy_capacity']
col_cuts = list(state)
col_cuts.insert(0, 0)
col_cuts.append(1)
row_cuts = [0, 0.5, 1]
rectangles = []
for i in range(len(row_cuts) - 1):
for j in range(len(col_cuts) - 1):
d = (col_cuts[j+1] - col_cuts[j]) * W * \
(row_cuts[i+1] - row_cuts[i]) * H
rho_time_limit = (flight_time_factor - trans_time_factor) / \
(comp_time_factor - trans_time_factor)
rho_energy_limit = (battery_energy_capacity - flight_energy_factor * d - trans_energy_factor * d) / (comp_energy_factor * d - trans_energy_factor * d)
if rho_energy_limit < 0:
return 100000
rho = min(rho_time_limit, rho_energy_limit)
flight_time = flight_time_factor * d
bs_time = bs_time_factor * (1 - rho) * d
rectangles.append({
'flight_time': flight_time,
'bs_time': bs_time,
'center': ((row_cuts[i] + row_cuts[i+1]) / 2.0 * H,
(col_cuts[j] + col_cuts[j+1]) / 2.0 * W)
})
mortorcade_time_lt = []
for idx in range(num_cars):
car_path = car_paths[idx]
flight_time = sum(rectangles[point]['flight_time']
for point in car_path)
bs_time = sum(rectangles[point]['bs_time'] for point in car_path)
car_time = 0
for i in range(len(car_path) - 1):
first_point = car_path[i]
second_point = car_path[i + 1]
car_time += math.dist(
rectangles[first_point]['center'], rectangles[second_point]['center']) * car_time_factor
car_time += math.dist(rectangles[car_path[0]]['center'],
[H / 2, W / 2]) * car_time_factor
car_time += math.dist(rectangles[car_path[-1]]['center'],
[H / 2, W / 2]) * car_time_factor
mortorcade_time_lt.append(max(car_time + flight_time, bs_time))
return max(mortorcade_time_lt)
# 环境类:定义状态转移与奖励
class FunctionEnv:
def __init__(self, initial_state):
self.state = initial_state # 初始状态 (x1,x2,x3)
self.best_value = float('inf') # 记录最佳值
self.no_improvement_count = 0 # 记录连续未改善的次数
self.last_state = None # 记录上一个状态
self.min_improvement = 0.001 # 最小改善阈值
self.max_no_improvement = 10 # 最大允许连续未改善次数
self.target_threshold = 10000 # 目标函数值的可接受阈值
def step(self, action):
# action: (var_index, delta)
var_index, delta = action
new_state = list(self.state)
new_state[var_index] = round(new_state[var_index] + delta, 2)
# 保证取值在0-1范围内
if new_state[var_index] < 0 or new_state[var_index] > 1:
return self.state, -10000.0, True # episode结束
# 检查约束x1 < x2 < x3
if not (0 < new_state[0] < new_state[1] < new_state[2] < 1):
return self.state, -10000.0, True
next_state = tuple(new_state)
current_value = f(next_state)
# 检查是否达到目标阈值
if current_value < self.target_threshold:
return next_state, 12000 - current_value, True
# 检查状态变化是否很小
if self.last_state is not None:
state_diff = sum(abs(a - b) for a, b in zip(next_state, self.last_state))
if state_diff < self.min_improvement:
self.no_improvement_count += 1
else:
self.no_improvement_count = 0
# 检查是否有改善
if current_value < self.best_value:
self.best_value = current_value
self.no_improvement_count = 0
else:
self.no_improvement_count += 1
# 如果连续多次没有改善结束episode
if self.no_improvement_count >= self.max_no_improvement:
return next_state, 12000 - current_value, True
self.last_state = next_state
self.state = next_state
return next_state, 12000 - current_value, False
def reset(self, state):
self.state = state
return self.state
# 初始化 Q-table使用字典表示key 为状态 tuplevalue 为 dict: action->Q值
Q_table = {}
def get_Q(state, action):
if state not in Q_table:
Q_table[state] = {a: 0.0 for a in ACTIONS}
return Q_table[state][action]
def set_Q(state, action, value):
if state not in Q_table:
Q_table[state] = {a: 0.0 for a in ACTIONS}
Q_table[state][action] = value
def choose_action(state, epsilon):
# ε-greedy 策略
if random.random() < epsilon:
return random.choice(ACTIONS)
else:
if state not in Q_table:
Q_table[state] = {a: 0.0 for a in ACTIONS}
# 返回Q值最大的动作
return max(Q_table[state].items(), key=lambda x: x[1])[0]
def load_initial_solution(file_path):
"""
JSON 文件加载初始解
:param file_path: JSON 文件路径
:return: 行切分比例列切分比例
"""
with open(file_path, 'r', encoding='utf-8') as file:
data = json.load(file)
row_cuts = data['row_boundaries']
col_cuts = data['col_boundaries']
car_paths = data['car_paths']
return row_cuts, col_cuts, car_paths
if __name__ == "__main__":
random.seed(42)
# ---------------------------
# 需要修改的超参数
# ---------------------------
solution_path = r"solutions\trav_ga_params2_parallel.json"
params_file = r"params2"
initial_row_cuts, initial_col_cuts, car_paths = load_initial_solution(
solution_path)
initial_state = (0.2, 0.4, 0.7)
# Q-learning 主循环
env = FunctionEnv(initial_state)
for episode in range(NUM_EPISODES):
print(f"Episode {episode + 1} of {NUM_EPISODES}")
state = env.reset(initial_state)
done = False
while not done:
# 选择动作
action = choose_action(state, EPSILON)
# 环境执行动作
next_state, reward, done = env.step(action)
# Q-learning 更新Q(s,a) = Q(s,a) + α [r + γ * max_a' Q(s', a') - Q(s,a)]
if next_state not in Q_table:
Q_table[next_state] = {a: 0.0 for a in ACTIONS}
max_next_Q = max(Q_table[next_state].values())
current_Q = get_Q(state, action)
new_Q = current_Q + ALPHA * (reward + GAMMA * max_next_Q - current_Q)
set_Q(state, action, new_Q)
state = next_state
# 可逐步减小探索率
EPSILON = max(0.01, EPSILON * 0.999)
# 输出 Q-table 中最佳策略的状态和值
best_state = None
best_value = float('inf')
for state in Q_table:
# 这里根据函数值来评价解的好坏
state_value = f(state)
if state_value < best_value:
best_value = state_value
best_state = state
print("找到的最优状态:", best_state, "对应函数值:", best_value)

View File

@ -11,12 +11,12 @@ random.seed(42)
# ---------------------------
# 需要修改的超参数
# ---------------------------
num_iterations = 10000
num_iterations = 1000000
# 随机生成分区的行分段数与列分段数
# R = random.randint(0, 3) # 行分段数
# C = random.randint(0, 3) # 列分段数
R = 3
C = 1
C = 3
params_file = 'params2'

View File

@ -0,0 +1,30 @@
{
"row_boundaries": [
0.0,
0.3000000000000001,
0.4800000000000001,
0.77,
1.0
],
"col_boundaries": [
0.0,
0.5,
1.0
],
"car_paths": [
[
1,
3,
5
],
[
4,
2,
0
],
[
7,
6
]
]
}

View File

@ -1,30 +1,30 @@
{
"row_boundaries": [
0.0,
0.3,
0.4,
0.7,
0.5,
1.0
],
"col_boundaries": [
0.0,
0.2,
0.5,
0.8,
1.0
],
"car_paths": [
[
2,
0
],
[
4,
5,
3,
1
7
],
[
6,
7
1,
5,
6
],
[
0,
4
]
]
}

View File

@ -0,0 +1,30 @@
{
"row_boundaries": [
0.0,
0.1,
0.4,
0.7,
1.0
],
"col_boundaries": [
0.0,
0.5,
1.0
],
"car_paths": [
[
0,
2,
4
],
[
5,
3,
1
],
[
7,
6
]
]
}

View File

@ -1,7 +1,7 @@
{
"row_boundaries": [
0.0,
0.1,
0.2,
0.4,
0.7,
1.0
@ -12,16 +12,16 @@
1.0
],
"car_paths": [
[
1,
3,
5
],
[
4,
2,
0
],
[
5,
3,
1
],
[
7,
6

View File

@ -53,7 +53,7 @@ if __name__ == "__main__":
# 需要修改的超参数
# ---------------------------
params_file = 'params2'
solution_file = r'solutions\mtkl_params2.json'
solution_file = r'solutions\trav_finetune_params2.json'
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)