离散情况

This commit is contained in:
weixin_46229132 2025-03-29 21:28:39 +08:00
parent 3e6887c655
commit 84f69f4293
13 changed files with 287 additions and 70 deletions

2
.gitignore vendored
View File

@ -8,7 +8,7 @@ __pycache__/
*.so
# Pytorch weights
weights/
model/
logs/
# Distribution / packaging

View File

@ -1,6 +1,6 @@
from DDPG import DDPG_agent
from datetime import datetime
from utils import str2bool, evaluate_policy
from utils import str2bool, evaluate_policy, Action_adapter
import gymnasium as gym
import shutil
import argparse
@ -32,7 +32,7 @@ parser.add_argument('--Max_train_steps', type=int,
default=5e8, help='Max training steps')
parser.add_argument('--save_interval', type=int, default=1e5,
help='Model saving interval, in steps.')
parser.add_argument('--eval_interval', type=int, default=2e3,
parser.add_argument('--eval_interval', type=int, default=2e2,
help='Model evaluating interval, in steps.')
parser.add_argument('--gamma', type=float, default=0.99,
@ -45,7 +45,7 @@ parser.add_argument('--c_lr', type=float, default=1e-3,
help='Learning rate of critic')
parser.add_argument('--batch_size', type=int, default=128,
help='batch_size of training')
parser.add_argument('--random_steps', type=int, default=5e4,
parser.add_argument('--random_steps', type=int, default=5e3,
help='random steps before trianing')
parser.add_argument('--noise', type=float, default=0.1, help='exploring noise')
opt = parser.parse_args()
@ -113,6 +113,7 @@ def main():
a = env.action_space.sample()
else:
a = agent.select_action(s, deterministic=False)
a = Action_adapter(a, opt.max_action)
s_next, r, dw, tr, info = env.step(
a) # dw: dead&win; tr: truncated
done = (dw or tr)
@ -127,7 +128,7 @@ def main():
'''record & log'''
if total_steps % opt.eval_interval == 0:
ep_r = evaluate_policy(eval_env, agent, turns=1)
ep_r = evaluate_policy(eval_env, agent, opt.max_action, turns=1)
if opt.write:
writer.add_scalar(
'ep_r', ep_r, global_step=total_steps)

View File

@ -36,7 +36,7 @@ class Q_Critic(nn.Module):
q = self.l3(q)
return q
def evaluate_policy(env, agent, turns = 3):
def evaluate_policy(env, agent, max_action, turns = 3):
total_scores = 0
for j in range(turns):
s = env.reset()
@ -45,11 +45,13 @@ def evaluate_policy(env, agent, turns = 3):
while not done:
# Take deterministic actions at test time
a = agent.select_action(s, deterministic=True)
s_next, r, dw, tr, info = env.step(a)
act = Action_adapter(a, max_action)
s_next, r, dw, tr, info = env.step(act)
done = (dw or tr)
action_series.append(a[0])
action_series.append(act[0])
total_scores += r
s = s_next
print('origin action: ', a)
print('action series: ', np.round(action_series, 3))
print('state: ', s)
return int(total_scores/turns)
@ -66,3 +68,7 @@ def str2bool(v):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def Action_adapter(a, max_action):
# from [0,1] to [-max,max]
return 2*(a-0.5)*max_action

View File

@ -58,23 +58,13 @@ class DQN_agent(object):
def select_action(self, state, deterministic):#only used when interact with the env
with torch.no_grad():
state = torch.FloatTensor(state.reshape(1, -1)).to(self.dvc)
# if deterministic:
# a = self.q_net(state).argmax().item()
# else:
if deterministic:
a = self.q_net(state).argmax().item()
else:
if np.random.rand() < self.exp_noise:
if state[0][0] == 0:
a = np.random.randint(0,10)
a = np.random.randint(0,self.action_dim)
else:
a = np.random.randint(10,15)
else:
if state[0][0] == 0:
q_value = self.q_net(state)
q_value[0][10:] = - float('inf')
a = q_value.argmax().item()
else:
q_value = self.q_net(state)
q_value[0][:10] = - float('inf')
a = q_value.argmax().item()
a = self.q_net(state).argmax().item()
return a
@ -84,17 +74,10 @@ class DQN_agent(object):
'''Compute the target Q value'''
with torch.no_grad():
if self.Double:
# TODO 如果有两个过程,这里记得也要更新
argmax_a = self.q_net(s_next).argmax(dim=1).unsqueeze(-1)
max_q_next = self.q_target(s_next).gather(1,argmax_a)
else:
max_q_next = self.q_target(s_next)
# 添加动作掩码操作
if s_next[0][0] == 0:
max_q_next[:, 10:] = -float('inf')
else:
max_q_next[:, :10] = -float('inf')
max_q_next = max_q_next.max(1)[0].unsqueeze(1)
max_q_next = self.q_target(s_next).max(1)[0].unsqueeze(1)
target_Q = r + (~dw) * self.gamma * max_q_next #dw: die or win
# Get current Q estimates
@ -112,7 +95,7 @@ class DQN_agent(object):
def save(self,algo,EnvName,steps):
torch.save(self.q_net.state_dict(), "./weights/{}_{}_{}.pth".format(algo,EnvName,steps))
torch.save(self.q_net.state_dict(), "./model/{}_{}_{}.pth".format(algo,EnvName,steps))
def load(self,algo,EnvName,steps):
self.q_net.load_state_dict(torch.load("./model/{}_{}_{}.pth".format(algo,EnvName,steps),map_location=self.dvc))

View File

@ -1,16 +1,16 @@
from DQN import DQN_agent
from datetime import datetime
from utils import evaluate_policy, str2bool
from datetime import datetime
from DQN import DQN_agent
import gymnasium as gym
import os
import shutil
import argparse
import torch
import numpy as np
# fmt: off
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from env_dis import PartitionMazeEnv
from env_partion_dist import PartitionEnv
# fmt: on
'''Hyperparameter Setting'''
@ -27,17 +27,17 @@ parser.add_argument('--Loadmodel', type=str2bool,
parser.add_argument('--ModelIdex', type=int, default=100,
help='which model to load')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--Max_train_steps', type=int,
default=int(1e8), help='Max training steps')
parser.add_argument('--save_interval', type=int,
default=int(50e3), help='Model saving interval, in steps.')
default=int(5e3), help='Model saving interval, in steps.')
parser.add_argument('--eval_interval', type=int, default=int(2e3),
help='Model evaluating interval, in steps.')
parser.add_argument('--random_steps', type=int, default=int(3e3),
help='steps for random policy to explore')
parser.add_argument('--update_every', type=int,
default=50, help='training frequency')
default=10, help='training frequency')
parser.add_argument('--gamma', type=float, default=0.99,
help='Discounted Factor')
@ -60,14 +60,13 @@ print(opt)
def main():
EnvName = ['CartPole-v1', 'LunarLander-v2']
BriefEnvName = ['PM_DQN', 'CPV1', 'LLdV2']
# env = gym.make(EnvName[opt.EnvIdex], render_mode = "human" if opt.render else None)
# eval_env = gym.make(EnvName[opt.EnvIdex])
env = PartitionMazeEnv()
eval_env = PartitionMazeEnv()
EnvName = ['PartitionEnv']
BriefEnvName = ['PartEnv']
env = PartitionEnv()
eval_env = PartitionEnv()
opt.state_dim = env.observation_space.shape[0]
opt.action_dim = env.action_space.n
opt.max_e_steps = env.MAX_ADJUST_STEP
# Algorithm Setting
if opt.Duel:
@ -88,7 +87,7 @@ def main():
print("Random Seed: {}".format(opt.seed))
print('Algorithm:', algo_name, ' Env:', BriefEnvName[opt.EnvIdex], ' state_dim:', opt.state_dim,
' action_dim:', opt.action_dim, ' Random Seed:', opt.seed, '\n')
' action_dim:', opt.action_dim, ' Random Seed:', opt.seed, ' max_e_steps:', opt.max_e_steps, '\n')
if opt.write:
from torch.utils.tensorboard import SummaryWriter
@ -117,18 +116,14 @@ def main():
while total_steps < opt.Max_train_steps:
# Do not use opt.seed directly, or it can overfit to opt.seed
s = env.reset(seed=env_seed)
env_seed += 1
done = False
'''Interact & trian'''
while not done:
# e-greedy exploration
if total_steps < opt.random_steps:
# if s[0] == 0:
# a = np.random.randint(0, 10)
# else:
# a = np.random.randint(10, 14)
action_series = [0, 0, 3, 0, 10]
a = action_series[total_steps % 5]
a = env.action_space.sample()
else:
a = agent.select_action(s, deterministic=False)
s_next, r, dw, tr, info = env.step(a)

View File

@ -1,5 +1,3 @@
import numpy as np
def evaluate_policy(env, agent, turns = 3):
total_scores = 0
for j in range(turns):
@ -14,7 +12,7 @@ def evaluate_policy(env, agent, turns = 3):
action_series.append(a)
total_scores += r
s = s_next
print('action series: ', np.round(action_series, 3))
print('action series: ', action_series)
print('state: ', s)
return int(total_scores/turns)

View File

@ -3,8 +3,8 @@ import random
# import matplotlib.pyplot as plt
import numpy as np
# np.random.seed(42)
np.random.seed(42)
random.seed(42)
class GA(object):
def __init__(self, num_drones, num_city, num_total, data, to_process_idx, rectangles):
@ -16,7 +16,7 @@ class GA(object):
self.location = data
self.to_process_idx = to_process_idx
self.rectangles = rectangles
self.epochs = 500
self.epochs = 1000
self.ga_choose_ratio = 0.2
self.mutate_ratio = 0.05
# fruits中存每一个个体是下标的list
@ -98,7 +98,7 @@ class GA(object):
return dis_mat
# 计算路径长度
def compute_pathlen(self, tmp_path, dis_mat):
def compute_pathlen(self, tmp_path):
path = tmp_path.copy()
if path[0] not in self.to_process_idx:
path.insert(0, 0)
@ -138,7 +138,7 @@ class GA(object):
if a in self.to_process_idx and b in self.to_process_idx:
car_time += 0
else:
car_time += dis_mat[a][b] * 100 # TODO 这里要换成对应参数
car_time += self.dis_mat[a][b] * 100 # TODO 这里要换成对应参数
car_move_info = {'car_path': car_path, 'car_time': car_time}
car_infos.append(car_move_info)
@ -179,7 +179,7 @@ class GA(object):
import pdb
pdb.set_trace()
length = self.compute_pathlen(fruit, self.dis_mat)
length = self.compute_pathlen(fruit)
adp.append(1.0 / length)
return np.array(adp)
@ -287,8 +287,8 @@ class GA(object):
gene_x_new = self.ga_mutate(gene_x_new)
if np.random.rand() < self.mutate_ratio:
gene_y_new = self.ga_mutate(gene_y_new)
x_adp = 1.0 / self.compute_pathlen(gene_x_new, self.dis_mat)
y_adp = 1.0 / self.compute_pathlen(gene_y_new, self.dis_mat)
x_adp = 1.0 / self.compute_pathlen(gene_x_new)
y_adp = 1.0 / self.compute_pathlen(gene_y_new)
# 将适应度高的放入种群中
if x_adp > y_adp and (not gene_x_new in fruits):
fruits.append(gene_x_new)

View File

@ -37,7 +37,7 @@ parser.add_argument('--Max_train_steps', type=int,
default=int(5e8), help='Max training steps')
parser.add_argument('--save_interval', type=int,
default=int(5e5), help='Model saving interval, in steps.')
parser.add_argument('--eval_interval', type=int, default=int(5e3),
parser.add_argument('--eval_interval', type=int, default=int(5e1),
help='Model evaluating interval, in steps.')
parser.add_argument('--gamma', type=float, default=0.99,

View File

@ -149,6 +149,7 @@ def evaluate_policy(env, agent, max_action, turns):
action_series.append(act[0])
total_scores += r
s = s_next
print('origin action:', a)
print('action series: ', np.round(action_series, 3))
print('state: ', s)

View File

@ -29,7 +29,7 @@ class PartitionEnv(gym.Env):
# 定义动作空间:全部动作均为 1 维连续 [0,1]
self.action_space = spaces.Box(
low=0.0, high=1.0, shape=(1,), dtype=np.float32)
low=-0.1, high=0.1, shape=(1,), dtype=np.float32)
# 定义观察空间为8维向量
# 前 4 维表示已决策的切分值(未决策部分为 0

232
env_partion_dist.py Normal file
View File

@ -0,0 +1,232 @@
import gymnasium as gym
from gymnasium import spaces
import numpy as np
import yaml
import math
from mTSP_solver import mTSP
from GA.ga import GA
class PartitionEnv(gym.Env):
"""
自定义环境分为两阶段
区域切分每一次切分都是(0, 1)之间的连续值
"""
def __init__(self, config=None):
super(PartitionEnv, self).__init__()
##############################
# 可能需要手动修改的超参数
##############################
self.params = 'params2'
self.ORI_ROW_CUTS = [0, 0.2, 0.4, 0.7, 1]
self.ORI_COL_CUTS = [0, 0.5, 1]
self.CUT_NUM = 4
self.BASE_LINE = 9100
self.MAX_ADJUST_STEP = 50
self.ADJUST_THRESHOLD = 0.1
# self.mTSP_STEPS = 10000
# 切分位置+/-0.01
self.action_space = spaces.Discrete(self.CUT_NUM*2 + 1)
# 定义观察空间为8维向量
self.observation_space = spaces.Box(
low=0.0, high=1.0, shape=(self.CUT_NUM + 4,), dtype=np.float32)
self.row_cuts = self.ORI_ROW_CUTS[:]
self.col_cuts = self.ORI_COL_CUTS[:]
self.rectangles = []
self.adjust_step = 0
# 车队参数设置
with open(self.params + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)
self.H = params['H']
self.W = params['W']
self.center = (self.H/2, self.W/2)
self.num_cars = params['num_cars']
self.flight_time_factor = params['flight_time_factor']
self.comp_time_factor = params['comp_time_factor']
self.trans_time_factor = params['trans_time_factor']
self.car_time_factor = params['car_time_factor']
self.bs_time_factor = params['bs_time_factor']
self.flight_energy_factor = params['flight_energy_factor']
self.comp_energy_factor = params['comp_energy_factor']
self.trans_energy_factor = params['trans_energy_factor']
self.battery_energy_capacity = params['battery_energy_capacity']
def reset(self, seed=None, options=None):
# 重置所有变量回到切分阶段phase 0
self.row_cuts = self.ORI_ROW_CUTS[:]
self.col_cuts = self.ORI_COL_CUTS[:]
self.rectangles = []
self.adjust_step = 0
# 状态:前 4 维为 partition_values其余为区域访问状态初始全0
state = np.array(self.row_cuts + self.col_cuts)
return state
def step(self, action):
if action == 1:
self.row_cuts[1] += 0.01
elif action == 2:
self.row_cuts[1] -= 0.01
elif action == 3:
self.row_cuts[2] += 0.01
elif action == 4:
self.row_cuts[2] -= 0.01
elif action == 5:
self.row_cuts[3] += 0.01
elif action == 6:
self.row_cuts[3] -= 0.01
elif action == 7:
self.col_cuts[1] += 0.01
elif action == 8:
self.col_cuts[1] -= 0.01
elif action == 9:
pass
self.adjust_step += 1
state = np.array(self.row_cuts + self.col_cuts)
if self.row_cuts[0] < self.row_cuts[1] < self.row_cuts[2] < self.row_cuts[3] < self.row_cuts[4] and self.col_cuts[0] < self.col_cuts[1] < self.col_cuts[2]:
# 调整合法,验证分区情况是否满足条件
rectangles = self.if_valid_partition()
if not rectangles:
# 不满足条件,结束
reward = -10000
return state, reward, True, False, {}
else:
# 满足条件,继续进行路径规划
# 每隔10步计算一次路径第一次也需要计算路径记录最佳路径
if self.adjust_step % 10 == 0 or self.adjust_step == 1:
best_time, self.best_path = self.ga_solver(rectangles)
else:
# 根据最佳路径计算当前时间
best_time = self.get_best_time(self.best_path, rectangles)
reward = self.BASE_LINE - best_time
if self.adjust_step < self.MAX_ADJUST_STEP:
done = False
else:
done = True
return state, reward, done, False, self.best_path
else:
# 调整不合法,结束
return state, -10, True, False, {}
def if_valid_partition(self):
rectangles = []
for i in range(len(self.row_cuts) - 1):
for j in range(len(self.col_cuts) - 1):
d = (self.col_cuts[j+1] - self.col_cuts[j]) * self.W * \
(self.row_cuts[i+1] -
self.row_cuts[i]) * self.H
rho_time_limit = (self.flight_time_factor - self.trans_time_factor) / \
(self.comp_time_factor - self.trans_time_factor)
rho_energy_limit = (self.battery_energy_capacity - self.flight_energy_factor * d - self.trans_energy_factor * d) / \
(self.comp_energy_factor * d -
self.trans_energy_factor * d)
if rho_energy_limit < 0:
return []
rho = min(rho_time_limit, rho_energy_limit)
flight_time = self.flight_time_factor * d
bs_time = self.bs_time_factor * (1 - rho) * d
rectangles.append({
'center': ((self.row_cuts[i] + self.row_cuts[i+1]) * self.H / 2, (self.col_cuts[j+1] + self.col_cuts[j]) * self.W / 2),
'flight_time': flight_time,
'bs_time': bs_time,
})
return rectangles
def check_adjustment_threshold(self, threshold=0.1):
"""
检查当前切分位置与原始切分位置的差异是否超过阈值
Args:
threshold (float): 允许的最大调整幅度
Returns:
bool: 如果任何切分位置的调整超过阈值返回True
"""
# 检查行切分位置
delta = 0
for i in range(len(self.row_cuts)):
delta += abs(self.row_cuts[i] - self.ORI_ROW_CUTS[i])
# 检查列切分位置
for i in range(len(self.col_cuts)):
delta += abs(self.col_cuts[i] - self.ORI_COL_CUTS[i])
if delta > threshold:
return True
return False
# def q_learning_solver(self):
# 使用q_learning解多旅行商
# cities: [[x1, x2, x3...], [y1, y2, y3...]] 城市坐标
# rec_center_lt = [rec_info['center']
# for rec_info in rectangles]
# cities = np.column_stack(rec_center_lt)
# cities = np.column_stack((self.center, cities))
# center_idx = []
# for i in range(self.num_cars - 1):
# cities = np.column_stack((cities, self.center))
# center_idx.append(cities.shape[1] - 1)
# tsp = mTSP(params=self.params, num_cities=cities.shape[1], cities=cities, num_cars=self.num_cars,
# center_idx=center_idx, rectangles=rectangles)
# best_time, best_path = tsp.train(self.mTSP_STEPS)
def ga_solver(self, rectangles):
cities = [self.center]
for rec in rectangles:
cities.append(rec['center'])
cities = np.array(cities)
center_idx = [0]
for i in range(self.num_cars - 1):
cities = np.row_stack((cities, self.center))
center_idx.append(cities.shape[0] - 1)
ga = GA(num_drones=self.num_cars, num_city=cities.shape[0], num_total=20,
data=cities, to_process_idx=center_idx, rectangles=rectangles)
best_path, best_time = ga.run()
return best_time, best_path
def get_best_time(self, best_path, rectangles):
cities = [self.center]
for rec in rectangles:
cities.append(rec['center'])
cities = np.array(cities)
center_idx = [0]
for i in range(self.num_cars - 1):
cities = np.row_stack((cities, self.center))
center_idx.append(cities.shape[0] - 1)
ga = GA(num_drones=self.num_cars, num_city=cities.shape[0], num_total=20,
data=cities, to_process_idx=center_idx, rectangles=rectangles)
best_time = ga.compute_pathlen(best_path)
return best_time
def render(self):
if self.phase == 1:
print("Phase 1: Initialize maze environment.")
print(f"Partition values so far: {self.partition_values}")
print(f"Motorcade positon: {self.car_pos}")
# input('1111')
elif self.phase == 2:
print("Phase 2: Play maze.")
print(f'Motorcade trajectory: {self.car_traj}')
# input('2222')

View File

@ -1,6 +1,6 @@
# from env import PartitionMazeEnv
# from env_dis import PartitionMazeEnv
from env_partion import PartitionEnv
from env_partion_dist import PartitionEnv
# env = PartitionMazeEnv()
env = PartitionEnv()
@ -9,9 +9,10 @@ state = env.reset()
print('state:', state)
# action_series = [[0.67], [0], [0], [0], [0.7]]
# action_series = [0, 0, 3, 0, 10]
action_series = [1, 1, 1, 1, 1, 1]
action_series = [1] * 30
# action_series = [[0.2], [0.4], [0.7], [0.5]]
action_series = [[-0.1], [0], [0], [0]]
# action_series = [[-0.08], [-0.08], [0], [0]]
for i in range(100):
action = action_series[i]