mTSP代码
This commit is contained in:
parent
656e822528
commit
8d79e8cc66
@ -98,6 +98,7 @@ class TSP(object):
|
|||||||
|
|
||||||
# 对 quality 取指数,计算 softmax 概率用
|
# 对 quality 取指数,计算 softmax 概率用
|
||||||
probabilities = np.exp(self.qualities[current_city_id])
|
probabilities = np.exp(self.qualities[current_city_id])
|
||||||
|
print(probabilities)
|
||||||
|
|
||||||
# 将已经走过的城市概率设置为零
|
# 将已经走过的城市概率设置为零
|
||||||
for city_visited in cities_visited:
|
for city_visited in cities_visited:
|
||||||
@ -210,5 +211,6 @@ async def main():
|
|||||||
print(f"路径长度: {tsp.best_path_length:.2f}")
|
print(f"路径长度: {tsp.best_path_length:.2f}")
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
np.random.seed(42)
|
||||||
# 使用asyncio.run()运行异步主函数
|
# 使用asyncio.run()运行异步主函数
|
||||||
asyncio.run(main())
|
asyncio.run(main())
|
228
Q_learning/mTSP.py
Normal file
228
Q_learning/mTSP.py
Normal file
@ -0,0 +1,228 @@
|
|||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class TSP(object):
|
||||||
|
'''
|
||||||
|
用 Q-Learning 求解 TSP 问题
|
||||||
|
作者 Surfer Zen @ https://www.zhihu.com/people/surfer-zen
|
||||||
|
'''
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
num_cities=15,
|
||||||
|
cities=None,
|
||||||
|
num_cars=2,
|
||||||
|
center_idx=[0],
|
||||||
|
alpha=2,
|
||||||
|
beta=1,
|
||||||
|
learning_rate=0.001,
|
||||||
|
eps=0.1,
|
||||||
|
):
|
||||||
|
'''
|
||||||
|
Args:
|
||||||
|
num_cities (int): 城市数目
|
||||||
|
alpha (float): 一个超参,值越大,越优先探索最近的点
|
||||||
|
beta (float): 一个超参,值越大,越优先探索可能导向总距离最优的点
|
||||||
|
learning_rate (float): 学习率
|
||||||
|
eps (float): 探索率,值越大,探索性越强,但越难收敛
|
||||||
|
'''
|
||||||
|
self.num_cities = num_cities
|
||||||
|
self.cities = cities
|
||||||
|
self.num_cars = num_cars
|
||||||
|
self.center_idx = center_idx
|
||||||
|
|
||||||
|
self.alpha = alpha
|
||||||
|
self.beta = beta
|
||||||
|
self.eps = eps
|
||||||
|
self.learning_rate = learning_rate
|
||||||
|
self.distances = self.get_dist_matrix()
|
||||||
|
self.mean_distance = self.distances.mean()
|
||||||
|
self.qualities = np.zeros([num_cities, num_cities])
|
||||||
|
self.normalizers = np.zeros(num_cities)
|
||||||
|
self.best_path = None
|
||||||
|
self.best_path_length = np.inf
|
||||||
|
|
||||||
|
def get_dist_matrix(self):
|
||||||
|
'''
|
||||||
|
根据城市坐标,计算距离矩阵
|
||||||
|
'''
|
||||||
|
dist_matrix = np.zeros([self.num_cities, self.num_cities])
|
||||||
|
for i in range(self.num_cities):
|
||||||
|
for j in range(self.num_cities):
|
||||||
|
if i == j:
|
||||||
|
continue
|
||||||
|
xi, xj = self.cities[0, i], self.cities[0, j]
|
||||||
|
yi, yj = self.cities[1, i], self.cities[1, j]
|
||||||
|
dist_matrix[i, j] = np.sqrt((xi-xj)**2 + (yi-yj)**2)
|
||||||
|
return dist_matrix
|
||||||
|
|
||||||
|
def rollout(self, start_city_id=None):
|
||||||
|
'''
|
||||||
|
从区域中心出发,根据策略,在城市间游走,直到所有城市都走了一遍
|
||||||
|
'''
|
||||||
|
cities_visited = []
|
||||||
|
action_probs = []
|
||||||
|
|
||||||
|
current_city_id = start_city_id
|
||||||
|
cities_visited.append(current_city_id)
|
||||||
|
while len(cities_visited) < self.num_cities:
|
||||||
|
current_city_id, action_prob = self.choose_next_city(
|
||||||
|
cities_visited)
|
||||||
|
cities_visited.append(current_city_id)
|
||||||
|
action_probs.append(action_prob)
|
||||||
|
cities_visited.append(cities_visited[0])
|
||||||
|
action_probs.append(1.0)
|
||||||
|
|
||||||
|
path_length = self.calc_max_length(cities_visited)
|
||||||
|
if path_length < self.best_path_length:
|
||||||
|
self.best_path = cities_visited
|
||||||
|
self.best_path_length = path_length
|
||||||
|
rewards = self.calc_path_rewards(cities_visited, path_length)
|
||||||
|
return cities_visited, action_probs, rewards
|
||||||
|
|
||||||
|
def choose_next_city(self, cities_visited):
|
||||||
|
'''
|
||||||
|
根据策略选择下一个城市
|
||||||
|
'''
|
||||||
|
current_city_id = cities_visited[-1]
|
||||||
|
|
||||||
|
# 对 quality 取指数,计算 softmax 概率用
|
||||||
|
probabilities = np.exp(self.qualities[current_city_id])
|
||||||
|
|
||||||
|
# 将已经走过的城市概率设置为零
|
||||||
|
for city_visited in cities_visited:
|
||||||
|
probabilities[city_visited] = 0
|
||||||
|
|
||||||
|
# 计算 softmax 概率
|
||||||
|
probabilities = probabilities/probabilities.sum()
|
||||||
|
|
||||||
|
if np.random.random() < self.eps:
|
||||||
|
# 以 eps 概率按softmax概率密度进行随机采样
|
||||||
|
next_city_id = np.random.choice(
|
||||||
|
range(len(probabilities)), p=probabilities)
|
||||||
|
else:
|
||||||
|
# 以 (1 - eps) 概率选择当前最优策略
|
||||||
|
next_city_id = probabilities.argmax()
|
||||||
|
|
||||||
|
# 计算当前决策/action 的概率
|
||||||
|
if probabilities.argmax() == next_city_id:
|
||||||
|
action_prob = probabilities[next_city_id]*self.eps + (1-self.eps)
|
||||||
|
else:
|
||||||
|
action_prob = probabilities[next_city_id]*self.eps
|
||||||
|
|
||||||
|
return next_city_id, action_prob
|
||||||
|
|
||||||
|
def calc_path_rewards(self, path, path_length):
|
||||||
|
'''
|
||||||
|
计算给定路径的奖励/rewards
|
||||||
|
Args:
|
||||||
|
path (list[int]): 路径,每个元素代表城市的 id
|
||||||
|
path_length (float): 路径长路
|
||||||
|
Returns:
|
||||||
|
rewards: 每一步的奖励,总距离以及当前这一步的距离越大,奖励越小
|
||||||
|
'''
|
||||||
|
rewards = []
|
||||||
|
for fr, to in zip(path[:-1], path[1:]):
|
||||||
|
dist = self.distances[fr, to]
|
||||||
|
reward = (self.mean_distance/path_length)**self.beta
|
||||||
|
if dist == 0:
|
||||||
|
reward = 1
|
||||||
|
else:
|
||||||
|
reward = reward*(self.mean_distance/dist)**self.alpha
|
||||||
|
rewards.append(np.log(reward))
|
||||||
|
return rewards
|
||||||
|
|
||||||
|
def calc_max_length(self, path):
|
||||||
|
'''
|
||||||
|
多旅行商问题,计算最长的那个路径
|
||||||
|
'''
|
||||||
|
split_result = self.split_path(path)
|
||||||
|
|
||||||
|
length_lt = []
|
||||||
|
for car_path in split_result:
|
||||||
|
path_length = 0
|
||||||
|
for fr, to in zip(car_path[:-1], car_path[1:]):
|
||||||
|
path_length += self.distances[fr, to]
|
||||||
|
length_lt.append(path_length)
|
||||||
|
return max(length_lt)
|
||||||
|
|
||||||
|
def split_path(self, path):
|
||||||
|
# 分割路径
|
||||||
|
split_indices = [i for i, x in enumerate(path) if x in self.center_idx]
|
||||||
|
split_result = []
|
||||||
|
start = 0
|
||||||
|
for idx in split_indices:
|
||||||
|
split_result.append(path[start:idx + 1]) # 包含分割值
|
||||||
|
start = idx # 从分割值开始
|
||||||
|
# 添加最后一部分
|
||||||
|
if start < len(path):
|
||||||
|
split_result.append(path[start:])
|
||||||
|
return split_result
|
||||||
|
|
||||||
|
def calc_updates_for_one_rollout(self, path, action_probs, rewards):
|
||||||
|
'''
|
||||||
|
对于给定的一次 rollout 的结果,计算其对应的 qualities 和 normalizers
|
||||||
|
'''
|
||||||
|
qualities = []
|
||||||
|
normalizers = []
|
||||||
|
for fr, to, reward, action_prob in zip(path[:-1], path[1:], rewards, action_probs):
|
||||||
|
log_action_probability = np.log(action_prob)
|
||||||
|
qualities.append(- reward*log_action_probability)
|
||||||
|
normalizers.append(- (reward + 1)*log_action_probability)
|
||||||
|
return qualities, normalizers
|
||||||
|
|
||||||
|
def update(self, path, new_qualities, new_normalizers):
|
||||||
|
'''
|
||||||
|
用渐近平均的思想,对 qualities 和 normalizers 进行更新
|
||||||
|
'''
|
||||||
|
lr = self.learning_rate
|
||||||
|
for fr, to, new_quality, new_normalizer in zip(
|
||||||
|
path[:-1], path[1:], new_qualities, new_normalizers):
|
||||||
|
self.normalizers[fr] = (
|
||||||
|
1-lr)*self.normalizers[fr] + lr*new_normalizer
|
||||||
|
self.qualities[fr, to] = (
|
||||||
|
1-lr)*self.qualities[fr, to] + lr*new_quality
|
||||||
|
|
||||||
|
def train_for_one_rollout(self, start_city_id):
|
||||||
|
'''
|
||||||
|
对一次 rollout 的结果进行训练的流程
|
||||||
|
'''
|
||||||
|
path, action_probs, rewards = self.rollout(start_city_id=start_city_id)
|
||||||
|
new_qualities, new_normalizers = self.calc_updates_for_one_rollout(
|
||||||
|
path, action_probs, rewards)
|
||||||
|
self.update(path, new_qualities, new_normalizers)
|
||||||
|
|
||||||
|
def train(self, num_epochs=1000):
|
||||||
|
'''
|
||||||
|
总训练流程
|
||||||
|
'''
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
self.train_for_one_rollout(start_city_id=0)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
np.random.seed(42)
|
||||||
|
center = np.array([0, 0])
|
||||||
|
# cities: [[x1, x2, x3...], [y1, y2, y3...]] 城市坐标
|
||||||
|
cites = np.random.random([2, 15]) * np.array([800, 600]).reshape(2, -1)
|
||||||
|
# cites = np.array([[10, -10], [0, 0]])
|
||||||
|
cites = np.column_stack((center, cites))
|
||||||
|
|
||||||
|
num_cars = 2
|
||||||
|
center_idx = []
|
||||||
|
for i in range(num_cars - 1):
|
||||||
|
cites = np.column_stack((cites, center))
|
||||||
|
center_idx.append(cites.shape[1] - 1)
|
||||||
|
|
||||||
|
tsp = TSP(num_cities=cites.shape[1], cities=cites,
|
||||||
|
num_cars=num_cars, center_idx=center_idx)
|
||||||
|
|
||||||
|
# 训练模型
|
||||||
|
tsp.train(1000)
|
||||||
|
|
||||||
|
# 输出最终路径
|
||||||
|
print(f"最优路径: {tsp.best_path}")
|
||||||
|
print(f"路径长度: {tsp.best_path_length:.2f}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in New Issue
Block a user