dqn 100_100_6
This commit is contained in:
parent
c6c7cb47f1
commit
90ad3e829d
@ -19,10 +19,10 @@ class PartitionEnv(gym.Env):
|
||||
# 可能需要手动修改的超参数
|
||||
##############################
|
||||
self.params = 'params_100_100_6'
|
||||
self.ORI_ROW_CUTS = [0, 0.2, 0.5, 0.7, 1]
|
||||
self.ORI_COL_CUTS = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
|
||||
self.CUT_NUM = 12
|
||||
self.BASE_LINE = 19616.68
|
||||
self.ORI_ROW_CUTS = [0, 0.2, 0.4, 0.6, 0.8, 1]
|
||||
self.ORI_COL_CUTS = [0, 0.2, 0.4, 0.5, 0.7, 0.8, 1]
|
||||
self.CUT_NUM = 9
|
||||
self.BASE_LINE = 19757.42
|
||||
self.MAX_ADJUST_STEP = 80
|
||||
# self.ADJUST_THRESHOLD = 0.1
|
||||
# self.mTSP_STEPS = 10000
|
||||
@ -94,16 +94,16 @@ class PartitionEnv(gym.Env):
|
||||
cut_index, signal = (action + 1) // 2, (action + 1) % 2
|
||||
if action == 0:
|
||||
pass
|
||||
elif cut_index <= 3:
|
||||
elif cut_index <= 4:
|
||||
if signal == 0:
|
||||
self.row_cuts[cut_index] += 0.01
|
||||
else:
|
||||
self.row_cuts[cut_index] -= 0.01
|
||||
else:
|
||||
if signal == 0:
|
||||
self.col_cuts[cut_index-3] += 0.01
|
||||
self.col_cuts[cut_index-4] += 0.01
|
||||
else:
|
||||
self.col_cuts[cut_index-3] -= 0.01
|
||||
self.col_cuts[cut_index-4] -= 0.01
|
||||
|
||||
# 检查row_cuts和col_cuts是否按升序排列
|
||||
if (all(self.row_cuts[i] < self.row_cuts[i+1] for i in range(len(self.row_cuts)-1)) and
|
||||
@ -122,8 +122,8 @@ class PartitionEnv(gym.Env):
|
||||
# else:
|
||||
# # 根据最佳路径计算当前时间
|
||||
# best_time = self.get_best_time(self.best_path, rectangles)
|
||||
self.best_path = [0, 17, 10, 9, 8, 7, 6, 5, 0, 28, 29, 30, 19, 20, 18, 16, 43, 27, 40, 39, 38, 37,
|
||||
36, 26, 45, 14, 13, 12, 11, 22, 21, 23, 24, 41, 44, 25, 34, 35, 33, 32, 31, 42, 15, 4, 3, 2, 1, 0]
|
||||
self.best_path = [33, 30, 29, 28, 27, 21, 15, 0, 13, 7, 1, 2, 31, 14, 8, 3, 4,
|
||||
10, 32, 23, 22, 24, 18, 17, 16, 35, 9, 12, 6, 5, 11, 34, 20, 25, 26, 19, 0]
|
||||
best_time = self.get_best_time(self.best_path, rectangles)
|
||||
|
||||
else:
|
||||
@ -257,9 +257,6 @@ class PartitionEnv(gym.Env):
|
||||
# tanh在变量值为2时,就非常接近1了。最大的time_diff为400
|
||||
normalized_diff = np.tanh(time_diff / 5000) # 20是缩放因子,可调整
|
||||
|
||||
# 计算轮次权重(折扣因子)
|
||||
# step_weight = 1 / (1 + np.exp(-self.adjust_step/10))
|
||||
|
||||
# 计算最终奖励
|
||||
reward = normalized_diff
|
||||
# * step_weight # 10是缩放因子
|
||||
|
@ -13,7 +13,7 @@ print('state:', state)
|
||||
# action_series = [1] * 30
|
||||
# action_series = [[0.2], [0.4], [0.7], [0.5]]
|
||||
# action_series = [[-0.08], [-0.08], [0], [0]]
|
||||
action_series = [0, 0, 3, 4, 24, 20]
|
||||
action_series = list(range(19))
|
||||
|
||||
for i in range(100):
|
||||
action = action_series[i]
|
||||
|
60
solutions/dqn_params_100_100_6.json
Normal file
60
solutions/dqn_params_100_100_6.json
Normal file
@ -0,0 +1,60 @@
|
||||
{
|
||||
"best_time": 19643.795059416032,
|
||||
"row_cuts": [
|
||||
0,
|
||||
0.2,
|
||||
0.4,
|
||||
0.6,
|
||||
0.78,
|
||||
1
|
||||
],
|
||||
"col_cuts": [
|
||||
0,
|
||||
0.2,
|
||||
0.4,
|
||||
0.5,
|
||||
0.7,
|
||||
0.8,
|
||||
1
|
||||
],
|
||||
"best_path": [
|
||||
33,
|
||||
30,
|
||||
29,
|
||||
28,
|
||||
27,
|
||||
21,
|
||||
15,
|
||||
0,
|
||||
13,
|
||||
7,
|
||||
1,
|
||||
2,
|
||||
31,
|
||||
14,
|
||||
8,
|
||||
3,
|
||||
4,
|
||||
10,
|
||||
32,
|
||||
23,
|
||||
22,
|
||||
24,
|
||||
18,
|
||||
17,
|
||||
16,
|
||||
35,
|
||||
9,
|
||||
12,
|
||||
6,
|
||||
5,
|
||||
11,
|
||||
34,
|
||||
20,
|
||||
25,
|
||||
26,
|
||||
19,
|
||||
0
|
||||
],
|
||||
"timestamp": "2025-04-05 11:03:20"
|
||||
}
|
Loading…
Reference in New Issue
Block a user