修改bug

This commit is contained in:
weixin_46229132 2025-03-13 10:46:28 +08:00
parent d53eda2570
commit b1851ac489
3 changed files with 148 additions and 19 deletions

View File

@ -61,7 +61,7 @@ class PartitionMazeEnv(gym.Env):
# 路径规划阶段相关变量 # 路径规划阶段相关变量
self.MAX_STEPS = 50 # 迷宫走法步数上限 self.MAX_STEPS = 50 # 迷宫走法步数上限
self.BASE_LINE = 3400.0 # 基准时间通过greedy或者蒙特卡洛计算出来 self.BASE_LINE = 3500.0 # 基准时间通过greedy或者蒙特卡洛计算出来
self.step_count = 0 self.step_count = 0
self.rectangles = {} self.rectangles = {}
self.car_pos = [[0.5, 0.5] for _ in range(self.num_cars)] self.car_pos = [[0.5, 0.5] for _ in range(self.num_cars)]
@ -139,7 +139,7 @@ class PartitionMazeEnv(gym.Env):
bs_time = self.bs_time_factor * (1 - rho) * d bs_time = self.bs_time_factor * (1 - rho) * d
self.rectangles[(i, j)] = { self.rectangles[(i, j)] = {
'center': ((h_boundaries[i] + h_boundaries[i+1]) * self.H / 2, (v_boundaries[j+1] + v_boundaries[j]) * self.W / 2), 'center': ((v_boundaries[j+1] + v_boundaries[j]) * self.W / 2, (h_boundaries[i] + h_boundaries[i+1]) * self.H / 2),
'flight_time': flight_time, 'flight_time': flight_time,
'bs_time': bs_time, 'bs_time': bs_time,
'is_visited': False 'is_visited': False
@ -247,10 +247,8 @@ class PartitionMazeEnv(gym.Env):
# print(T) # print(T)
# print(self.car_traj) # print(self.car_traj)
reward += -(T - self.BASE_LINE) reward += -(T - self.BASE_LINE)
print(T)
print(self.car_traj)
elif done and self.step_count >= self.MAX_STEPS: elif done and self.step_count >= self.MAX_STEPS:
reward += -100 reward += -10000
return state, reward, done, False, {} return state, reward, done, False, {}
@ -269,8 +267,8 @@ class PartitionMazeEnv(gym.Env):
second_point = self.car_traj[idx][i + 1] second_point = self.car_traj[idx][i + 1]
car_time += math.dist(self.rectangles[tuple(first_point)]['center'], self.rectangles[tuple(second_point)]['center']) * \ car_time += math.dist(self.rectangles[tuple(first_point)]['center'], self.rectangles[tuple(second_point)]['center']) * \
self.car_time_factor self.car_time_factor
car_time += math.dist(self.rectangles[tuple(self.car_traj[idx][0])]['center'], [self.H / 2, self.W / 2]) car_time += math.dist(self.rectangles[tuple(self.car_traj[idx][0])]['center'], [self.W / 2, self.H / 2]) * self.car_time_factor
car_time += math.dist(self.rectangles[tuple(self.car_traj[idx][-1])]['center'], [self.H / 2, self.W / 2]) car_time += math.dist(self.rectangles[tuple(self.car_traj[idx][-1])]['center'], [self.W / 2, self.H / 2]) * self.car_time_factor
return max(float(car_time) + flight_time, bs_time) return max(float(car_time) + flight_time, bs_time)

129
PPO/main_test.py Normal file
View File

@ -0,0 +1,129 @@
"""
This file is the executable for running PPO. It is based on this medium article:
https://medium.com/@eyyu/coding-ppo-from-scratch-with-pytorch-part-1-4-613dfc1b14c8
"""
import gymnasium as gym
import sys
import torch
import argparse
from ppo import PPO
from network import FeedForwardNN
from eval_policy import eval_policy
from env import PartitionMazeEnv
def train(env, hyperparameters, actor_model, critic_model):
"""
Trains the model.
Parameters:
env - the environment to train on
hyperparameters - a dict of hyperparameters to use, defined in main
actor_model - the actor model to load in if we want to continue training
critic_model - the critic model to load in if we want to continue training
Return:
None
"""
print(f"Training", flush=True)
# Create a model for PPO.
model = PPO(policy_class=FeedForwardNN, env=env, **hyperparameters)
# Tries to load in an existing actor/critic model to continue training on
if actor_model != '' and critic_model != '':
print(f"Loading in {actor_model} and {critic_model}...", flush=True)
model.actor.load_state_dict(torch.load(actor_model))
model.critic.load_state_dict(torch.load(critic_model))
print(f"Successfully loaded.", flush=True)
elif actor_model != '' or critic_model != '': # Don't train from scratch if user accidentally forgets actor/critic model
print(f"Error: Either specify both actor/critic models or none at all. We don't want to accidentally override anything!")
sys.exit(0)
else:
print(f"Training from scratch.", flush=True)
# Train the PPO model with a specified total timesteps
# NOTE: You can change the total timesteps here, I put a big number just because
# you can kill the process whenever you feel like PPO is converging
model.learn(total_timesteps=200_000_000)
def test(env, actor_model):
"""
Tests the model.
Parameters:
env - the environment to test the policy on
actor_model - the actor model to load in
Return:
None
"""
print(f"Testing {actor_model}", flush=True)
# If the actor model is not specified, then exit
if actor_model == '':
print(f"Didn't specify model file. Exiting.", flush=True)
sys.exit(0)
# Extract out dimensions of observation and action spaces
obs_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]
# Build our policy the same way we build our actor model in PPO
policy = FeedForwardNN(obs_dim, act_dim)
# Load in the actor model saved by the PPO algorithm
policy.load_state_dict(torch.load(actor_model))
# Evaluate our policy with a separate module, eval_policy, to demonstrate
# that once we are done training the model/policy with ppo.py, we no longer need
# ppo.py since it only contains the training algorithm. The model/policy itself exists
# independently as a binary file that can be loaded in with torch.
eval_policy(policy=policy, env=env, render=True)
def main(args):
"""
The main function to run.
Parameters:
args - the arguments parsed from command line
Return:
None
"""
# NOTE: Here's where you can set hyperparameters for PPO. I don't include them as part of
# ArgumentParser because it's too annoying to type them every time at command line. Instead, you can change them here.
# To see a list of hyperparameters, look in ppo.py at function _init_hyperparameters
hyperparameters = {
'timesteps_per_batch': 2048,
'max_timesteps_per_episode': 200,
'gamma': 0.99,
'n_updates_per_iteration': 10,
'lr': 3e-4,
'clip': 0.2,
'render': True,
'render_every_i': 10
}
# Creates the environment we'll be running. If you want to replace with your own
# custom environment, note that it must inherit Gym and have both continuous
# observation and action spaces.
# env = gym.make('Pendulum-v1', render_mode='human' if args.mode == 'test' else 'rgb_array')
env = PartitionMazeEnv()
# Train or test, depending on the mode specified
if args.mode == 'train':
train(env=env, hyperparameters=hyperparameters, actor_model=args.actor_model, critic_model=args.critic_model)
else:
test(env=env, actor_model=args.actor_model)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', dest='mode', type=str, default='test') # can be 'train' or 'test'
parser.add_argument('--actor_model', dest='actor_model', type=str, default='./weights/ppo_actor.pth') # your actor model filename
parser.add_argument('--critic_model', dest='critic_model', type=str, default='') # your critic model filename
args = parser.parse_args()
main(args)

View File

@ -6,7 +6,7 @@ import yaml
# 固定随机种子,便于复现 # 固定随机种子,便于复现
random.seed(42) random.seed(42)
num_iterations = 1000000 num_iterations = 10000
# --------------------------- # ---------------------------
# 参数设置 # 参数设置
@ -117,17 +117,14 @@ for iteration in range(num_iterations):
total_flight_time = sum(task['flight_time'] for task in tasks) total_flight_time = sum(task['flight_time'] for task in tasks)
if tasks: if tasks:
# 车辆从区域中心到第一个任务中心 # 车辆从区域中心到第一个任务中心
car_time = math.hypot(tasks[0]['center'][0] - region_center[0], car_time += math.dist(tasks[0]['center'], region_center) * car_time_factor
tasks[0]['center'][1] - region_center[1]) * car_time_factor
# 依次经过任务中心 # 依次经过任务中心
for j in range(1, len(tasks)): for j in range(len(tasks) - 1):
prev_center = tasks[j - 1]['center'] prev_center = tasks[j]['center']
curr_center = tasks[j]['center'] curr_center = tasks[j + 1]['center']
car_time += math.hypot(curr_center[0] - prev_center[0], car_time += math.dist(curr_center, prev_center) * car_time_factor
curr_center[1] - prev_center[1]) * car_time_factor
# 回到区域中心 # 回到区域中心
car_time += math.hypot(curr_center[0] - region_center[0], car_time += math.dist(region_center, curr_center) * car_time_factor
curr_center[1] - prev_center[1]) * car_time_factor
else: else:
car_time = 0 car_time = 0
@ -150,7 +147,10 @@ for iteration in range(num_iterations):
'R': R, 'R': R,
'C': C, 'C': C,
'row_boundaries': row_boundaries, 'row_boundaries': row_boundaries,
'col_boundaries': col_boundaries 'col_boundaries': col_boundaries,
'car_time': car_time,
'flight_time': total_flight_time,
'bs_time': total_bs_time
} }
# --------------------------- # ---------------------------
@ -158,6 +158,8 @@ for iteration in range(num_iterations):
# --------------------------- # ---------------------------
if best_solution is not None: if best_solution is not None:
print("最佳 T (各系统中最长的完成时间):", best_solution['T_max']) print("最佳 T (各系统中最长的完成时间):", best_solution['T_max'])
print(best_solution['iteration'], "次模拟后找到最佳方案:")
print(best_solution['car_time'], best_solution['flight_time'], best_solution['bs_time'])
for i in range(k): for i in range(k):
num_tasks = len(best_solution['system_tasks'][i]) num_tasks = len(best_solution['system_tasks'][i])
print( print(
@ -168,7 +170,7 @@ else:
# 在输出最佳方案后添加详细信息 # 在输出最佳方案后添加详细信息
if best_solution is not None: if best_solution is not None:
print("\n各系统详细信息:") print("\n各系统详细信息:")
region_center = (H / 2.0, W / 2.0) region_center = (W / 2.0, H / 2.0)
for system_id, tasks in best_solution['system_tasks'].items(): for system_id, tasks in best_solution['system_tasks'].items():
print(f"\n系统 {system_id} 的任务详情:") print(f"\n系统 {system_id} 的任务详情:")