修改dqn奖励

This commit is contained in:
weixin_46229132 2025-04-01 17:46:23 +08:00
parent 58952f1fdb
commit db04a87ffd
7 changed files with 133 additions and 39 deletions

View File

@ -142,7 +142,7 @@ def main():
if total_steps % 1000 == 0:
agent.exp_noise *= opt.noise_decay
if total_steps % opt.eval_interval == 0:
score = evaluate_policy(eval_env, agent, turns=3)
score = evaluate_policy(eval_env, agent, turns=1)
if opt.write:
writer.add_scalar(
'ep_r', score, global_step=total_steps)

View File

@ -1,31 +1,88 @@
def evaluate_policy(env, agent, turns = 3):
import json
from datetime import datetime
import copy
def evaluate_policy(env, agent, turns=3):
"""
评估策略
Args:
env: 环境对象
agent: 智能体对象
turns: 评估轮数
Returns:
int: 平均得分
"""
total_scores = 0
for j in range(turns):
s = env.reset()
done = False
action_series = []
while not done:
# Take deterministic actions at test time
a = agent.select_action(s, deterministic=True)
s_next, r, dw, tr, info = env.step(a)
done = (dw or tr)
action_series.append(a)
total_scores += r
s = s_next
print('action series: ', action_series)
print('state: ', s)
# for j in range(turns):
s = env.reset()
done = False
eval_info = {'action_series': [],
# 'state_series': [],
'reward_series': []}
info_lt = []
while not done:
a = agent.select_action(s, deterministic=True)
s_next, r, dw, tr, info = env.step(a)
done = (dw or tr)
eval_info['action_series'].append(a)
eval_info['reward_series'].append(r)
info_lt.append(copy.deepcopy(info))
total_scores += r
s = s_next
print(eval_info)
save_best_solution(info_lt)
return int(total_scores/turns)
#You can just ignore this funciton. Is not related to the RL.
def save_best_solution(info_lt):
# 找出这一轮中最优的解
best_info = min(info_lt, key=lambda x: x['best_time'])
# 读取已有的最优解
try:
with open('solutions/dqn_params_50_50_3.json', 'r') as f:
saved_solution = json.load(f)
saved_time = saved_solution['best_time']
except FileNotFoundError:
saved_time = float('inf')
# 如果新的解更好则更新json文件
if best_info['best_time'] < saved_time:
best_solution = {
'best_time': best_info['best_time'],
'row_cuts': best_info['row_cuts'],
'col_cuts': best_info['col_cuts'],
'best_path': best_info['best_path'],
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
with open('solutions/dqn_params_50_50_3.json', 'w') as f:
json.dump(best_solution, f, indent=4)
print(f"发现新的最优解!时间: {best_info['best_time']}")
def compare_lists(list1, list2):
return len(list1) == len(list2) and all(a == b for a, b in zip(list1, list2))
# You can just ignore this funciton. Is not related to the RL.
def str2bool(v):
'''transfer str to bool for argparse'''
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'True','true','TRUE', 't', 'y', '1'):
if v.lower() in ('yes', 'True', 'true', 'TRUE', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'False','false','FALSE', 'f', 'n', '0'):
elif v.lower() in ('no', 'False', 'false', 'FALSE', 'f', 'n', '0'):
return False
else:
print('Wrong Input.')
raise
raise

View File

@ -16,7 +16,7 @@ class GA(object):
self.location = data
self.to_process_idx = to_process_idx
self.rectangles = rectangles
self.epochs = 1000
self.epochs = 1500
self.ga_choose_ratio = 0.2
self.mutate_ratio = 0.05
# fruits中存每一个个体是下标的list

View File

@ -18,11 +18,11 @@ class PartitionEnv(gym.Env):
##############################
# 可能需要手动修改的超参数
##############################
self.params = 'params2'
self.params = 'params_50_50_3'
self.ORI_ROW_CUTS = [0, 0.2, 0.4, 0.7, 1]
self.ORI_COL_CUTS = [0, 0.5, 1]
self.CUT_NUM = 4
self.BASE_LINE = 9100
self.BASE_LINE = 9051.16
self.MAX_ADJUST_STEP = 50
self.ADJUST_THRESHOLD = 0.1
# self.mTSP_STEPS = 10000
@ -115,11 +115,13 @@ class PartitionEnv(gym.Env):
reward = self.calc_reward(best_time)
self.adjust_step += 1
state = np.array(self.row_cuts + self.col_cuts)
info = {'row_cuts': self.row_cuts, 'col_cuts': self.col_cuts,
'best_path': self.best_path, 'best_time': best_time}
if self.adjust_step < self.MAX_ADJUST_STEP:
return state, reward, False, False, {}
return state, reward, False, False, info
else:
return state, reward, True, False, {}
return state, reward, True, False, info
def if_valid_partition(self):
rectangles = []
@ -221,7 +223,11 @@ class PartitionEnv(gym.Env):
def calc_reward(self, best_time):
"""
计算奖励
计算奖励
1. 如果时间小于基准线给予正奖励
2. 如果时间大于基准线给予负奖励
3. 保持归一化和折扣因子
Args:
best_time (float): 当前路径的时间
Returns:
@ -229,14 +235,15 @@ class PartitionEnv(gym.Env):
"""
time_diff = self.BASE_LINE - best_time
# 归一化时间差
normalized_diff = 1 / (1 + np.exp(-time_diff/20))
# 使用tanh归一化确保time_diff=0时normalized_diff=0
# tanh在变量值为2时就非常接近1了。最大的time_diff为400
normalized_diff = np.tanh(time_diff / 200) # 20是缩放因子可调整
# 计算轮次权重
# 计算轮次权重(折扣因子)
step_weight = 1 / (1 + np.exp(-self.adjust_step/10))
# 计算最终奖励(添加缩放因子)
reward = normalized_diff * step_weight * 10 # 10是缩放因子
# 计算最终奖励
reward = normalized_diff * step_weight # 10是缩放因子
return reward

View File

@ -12,7 +12,7 @@ random.seed(42)
# ---------------------------
# 需要修改的超参数
# ---------------------------
num_iterations = 100000000
num_iterations = 3000000000
# 随机生成分区的行分段数与列分段数
R = random.randint(0, 3) # 行分段数
C = random.randint(0, 3) # 列分段数
@ -47,13 +47,15 @@ best_solution = None
for iteration in tqdm(range(num_iterations), desc="蒙特卡洛模拟进度"):
# 直接切值
horiz = [random.random() for _ in range(R)]
# horiz = [random.random() for _ in range(R)]
horiz = [random.randint(1, 999)/1000 for _ in range(R)]
horiz = sorted(set(horiz))
horiz = horiz if horiz else []
row_boundaries = [0] + horiz + [1]
row_boundaries = [boundary * H for boundary in row_boundaries]
vert = [random.random() for _ in range(C)]
# vert = [random.random() for _ in range(C)]
vert = [random.randint(1, 999)/1000 for _ in range(C)]
vert = sorted(set(vert))
vert = vert if vert else []
col_boundaries = [0] + vert + [1]
@ -151,8 +153,6 @@ for iteration in tqdm(range(num_iterations), desc="蒙特卡洛模拟进度"):
T_max = max(T_k_list) # 整体目标 T 为各系统中最大的 T_k
# TODO 没有限制系统的总能耗
if T_max < best_T:
best_T = T_max
best_solution = {
@ -168,6 +168,7 @@ for iteration in tqdm(range(num_iterations), desc="蒙特卡洛模拟进度"):
'flight_time': total_flight_time,
'bs_time': total_bs_time
}
print(iteration)
# ---------------------------
# 输出最佳方案

View File

@ -0,0 +1,29 @@
{
"best_time": 9051.162633521315,
"row_cuts": [
0,
0.21000000000000002,
0.4,
0.7,
1
],
"col_cuts": [
0,
0.5,
1
],
"best_path": [
7,
8,
0,
6,
2,
4,
10,
9,
5,
3,
1
],
"timestamp": "2025-04-01 17:43:22"
}

View File

@ -14,8 +14,8 @@ def visualize_solution(row_boundaries, col_boundaries, car_paths_coords, W, H, r
# 设置英文标题和标签
# ax.set_title("Monte Carlo", fontsize=12)
ax.set_title("Greedy", fontsize=12)
# ax.set_title("Enumeration-Genetic Algorithm", fontsize=12)
# ax.set_title("Greedy", fontsize=12)
ax.set_title("Enumeration-Genetic Algorithm", fontsize=12)
# ax.set_title("DQN fine-tuning", fontsize=12)
ax.set_xlabel("Region Width", fontsize=10)
@ -200,7 +200,7 @@ if __name__ == "__main__":
# 需要修改的超参数
# ---------------------------
params_file = 'params_50_50_3'
solution_file = r'solutions\greedy_params_50_50_3.json'
solution_file = r'solutions\trav_ga_params_50_50_3_parallel.json'
with open(params_file + '.yml', 'r', encoding='utf-8') as file:
params = yaml.safe_load(file)