import random import math import matplotlib.pyplot as plt import matplotlib.patches as patches import numpy as np from ga import GA import plot_util # 固定随机种子,便于复现 random.seed(42) # --------------------------- # 参数设置 # --------------------------- H = 20 # 区域高度,网格点之间的距离为25m(单位距离) W = 25 # 区域宽度 k = 1 # 系统数量(车-巢-机系统个数) num_iterations = 10000 # 蒙特卡洛模拟迭代次数 # 时间系数(单位:秒,每个网格一张照片) flight_time_factor = 3 # 每张照片对应的飞行时间,无人机飞行速度为9.5m/s,拍摄照片的时间间隔为3s comp_uav_factor = 5 # 无人机上每张照片计算时间,5s trans_time_factor = 0.3 # 每张照片传输时间,0.3s car_move_time_factor = 2 * 50 # TODO 汽车每单位距离的移动时间,2s,加了一个放大因子 comp_bs_factor = 5 # 机巢上每张照片计算时间 # 其他参数 flight_energy_factor = 0.05 # 单位:分钟/张 comp_energy_factor = 0.05 # 计算能耗需要重新估计 trans_energy_factor = 0.0025 battery_capacity = 10 # 无人机只进行飞行,续航为30分钟 # bs_energy_factor = # car_energy_factor = # --------------------------- # 蒙特卡洛模拟,寻找最佳方案 # --------------------------- best_T = float('inf') best_solution = None for iteration in range(num_iterations): # 随机生成分区的行分段数与列分段数 R = random.randint(1, 5) # 行分段数 C = random.randint(1, 5) # 列分段数 # 生成随机的行、列分割边界 row_boundaries = sorted(random.sample(range(1, H), R - 1)) row_boundaries = [0] + row_boundaries + [H] col_boundaries = sorted(random.sample(range(1, W), C - 1)) col_boundaries = [0] + col_boundaries + [W] # --------------------------- # 根据分割边界生成所有矩形任务 # --------------------------- rectangles = [] valid_partition = True # 标记此分区是否满足所有约束 for i in range(len(row_boundaries) - 1): for j in range(len(col_boundaries) - 1): r1 = row_boundaries[i] r2 = row_boundaries[i + 1] c1 = col_boundaries[j] c2 = col_boundaries[j + 1] d = (r2 - r1) * (c2 - c1) # 任务的照片数量(矩形面积) # 求解rho rho_time_limit = (flight_time_factor - trans_time_factor) / \ (comp_uav_factor - trans_time_factor) rho_energy_limit = (battery_capacity - flight_energy_factor * d - trans_energy_factor * d) / \ (comp_energy_factor * d - trans_energy_factor * d) if rho_energy_limit < 0: valid_partition = False break rho = min(rho_time_limit, rho_energy_limit) # print(rho) flight_time = flight_time_factor * d comp_time = comp_uav_factor * rho * d trans_time = trans_time_factor * (1 - rho) * d comp_bs_time = comp_bs_factor * (1 - rho) * d # 计算任务矩形中心,用于后续车辆移动时间计算 center_r = (r1 + r2) / 2.0 center_c = (c1 + c2) / 2.0 rectangles.append({ 'r1': r1, 'r2': r2, 'c1': c1, 'c2': c2, 'd': d, 'rho': rho, 'flight_time': flight_time, 'comp_time': comp_time, 'trans_time': trans_time, 'comp_bs_time': comp_bs_time, 'center': [center_r, center_c] }) if not valid_partition: break # 如果有中存在任务不满足电池约束,则跳过这种分区 if not valid_partition: continue # --------------------------- # 使用遗传算法,寻找最佳方案 # --------------------------- num_city = len(rectangles) + 1 # 划分好的区域中心点+整个区域的中心 epochs = 3000 # 初始化坐标 (第一个点是整个区域的中心) center_data = [[H / 2.0, W / 2.0]] for rec in rectangles: center_data.append(rec['center']) center_data = np.array(center_data) # 关键:有k架无人机,则再增加N-1个`点` (坐标是起始点),这些点之间的距离是inf for d in range(k - 1): center_data = np.vstack([center_data, center_data[0]]) num_city += 1 # 增加欺骗城市 to_process_idx = [0] # print("start point:", location[0]) for d in range(1, k): # 1, ... drone-1 # print("added base point:", location[num_city - d]) to_process_idx.append(num_city - d) model = GA(num_drones=k, num_city=center_data.shape[0], num_total=20, data=center_data.copy(), to_process_idx=to_process_idx, rectangles=rectangles) Best_path, Best = model.run() # 根据最佳路径计算各系统任务分配 if Best_path[0] not in to_process_idx: Best_path.insert(0, 0) if Best_path[-1] not in to_process_idx: Best_path.append(0) # 计算各系统的任务分配 system_tasks = [] found_start_points_indices = [] for i in range(len(Best_path)): if Best_path[i] in to_process_idx: found_start_points_indices.append(i) for j in range(len(found_start_points_indices) - 1): from_index = found_start_points_indices[j] end_index = found_start_points_indices[j + 1] system_task = [] for k in range(from_index, end_index + 1): if Best_path[k] not in to_process_idx: system_task.append(rectangles[Best_path[k] - 1]) system_tasks.append(system_task) if Best < best_T: best_T = Best best_solution = { 'system_tasks': system_tasks, # 'T_k_list': T_k_list, 'best_T': best_T, 'iteration': iteration, 'R': R, 'C': C, 'row_boundaries': row_boundaries, 'col_boundaries': col_boundaries } # --------------------------- # 输出最佳方案 # --------------------------- if best_solution is not None: print("最佳 T (各系统中最长的完成时间):", best_solution['best_T']) for i in range(k): num_tasks = len(best_solution['system_tasks'][i]) print( f"系统 {i}: 飞行任务数量: {num_tasks}") else: print("在给定的模拟次数内未找到满足所有约束的方案。")