""" This file contains a neural network module for us to define our actor and critic networks in PPO. """ import torch from torch import nn import torch.nn.functional as F import numpy as np class FeedForwardNN(nn.Module): """ A standard in_dim-64-64-out_dim Feed Forward Neural Network. """ def __init__(self, in_dim, out_dim): """ Initialize the network and set up the layers. Parameters: in_dim - input dimensions as an int out_dim - output dimensions as an int Return: None """ super(FeedForwardNN, self).__init__() self.layer1 = nn.Linear(in_dim, 64) self.layer2 = nn.Linear(64, 64) self.layer3 = nn.Linear(64, out_dim) def forward(self, obs): """ Runs a forward pass on the neural network. Parameters: obs - observation to pass as input Return: output - the output of our forward pass """ # Convert observation to tensor if it's a numpy array if isinstance(obs, np.ndarray): obs = torch.tensor(obs, dtype=torch.float) activation1 = F.relu(self.layer1(obs)) activation2 = F.relu(self.layer2(activation1)) output = self.layer3(activation2) return output