import gymnasium as gym from gymnasium import spaces import numpy as np import yaml import math from mTSP_solver import mTSP from GA.ga import GA class PartitionEnv(gym.Env): """ 自定义环境,分为两阶段: 区域切分,每一次切分都是(0, 1)之间的连续值 """ def __init__(self, config=None): super(PartitionEnv, self).__init__() ############################## # 可能需要手动修改的超参数 ############################## self.params = 'params2' self.ORI_ROW_CUTS = [0, 0.2, 0.4, 0.7, 1] self.ORI_COL_CUTS = [0, 0.5, 1] self.CUT_NUM = 4 self.ROW_CUT_LIMIT = 3 self.COL_CUT_LIMIT = 1 self.BASE_LINE = 10000 self.mTSP_STEPS = 10000 # 定义动作空间:全部动作均为 1 维连续 [0,1] self.action_space = spaces.Box( low=-0.1, high=0.1, shape=(1,), dtype=np.float32) # 定义观察空间为8维向量 # 前 4 维表示已决策的切分值(未决策部分为 0) self.observation_space = spaces.Box( low=0.0, high=1.0, shape=(self.CUT_NUM + 4,), dtype=np.float32) self.partition_step = 0 self.ori_row_cuts = self.ORI_ROW_CUTS[:] self.ori_col_cuts = self.ORI_COL_CUTS[:] self.rectangles = [] # 车队参数设置 with open(self.params + '.yml', 'r', encoding='utf-8') as file: params = yaml.safe_load(file) self.H = params['H'] self.W = params['W'] self.center = (self.H/2, self.W/2) self.num_cars = params['num_cars'] self.flight_time_factor = params['flight_time_factor'] self.comp_time_factor = params['comp_time_factor'] self.trans_time_factor = params['trans_time_factor'] self.car_time_factor = params['car_time_factor'] self.bs_time_factor = params['bs_time_factor'] self.flight_energy_factor = params['flight_energy_factor'] self.comp_energy_factor = params['comp_energy_factor'] self.trans_energy_factor = params['trans_energy_factor'] self.battery_energy_capacity = params['battery_energy_capacity'] def reset(self, seed=None, options=None): # 重置所有变量,回到切分阶段(phase 0) self.phase = 0 self.partition_step = 0 self.ori_row_cuts = self.ORI_ROW_CUTS[:] self.ori_col_cuts = self.ORI_COL_CUTS[:] self.rectangles = [] # 状态:前 4 维为 partition_values,其余为区域访问状态(初始全0) state = np.array(self.ori_row_cuts + self.ori_col_cuts) return state def step(self, action): # 在所有阶段动作均为 1 维连续动作,取 action[0] adjust = float(action[0]) valid_adjust = True if self.partition_step < self.ROW_CUT_LIMIT: row_cut = self.ori_row_cuts[self.partition_step + 1] new_row_cut = row_cut + adjust self.ori_row_cuts[self.partition_step + 1] = new_row_cut if self.ori_row_cuts[self.partition_step] < new_row_cut < self.ori_row_cuts[self.partition_step + 2]: pass else: valid_adjust = False reward = -100 else: col_idx = self.partition_step - self.ROW_CUT_LIMIT col_cut = self.ori_col_cuts[col_idx + 1] new_col_cut = col_cut + adjust self.ori_col_cuts[col_idx + 1] = new_col_cut if self.ori_col_cuts[col_idx] < new_col_cut < self.ori_col_cuts[col_idx + 2]: pass else: valid_adjust = False reward = -100 self.partition_step += 1 state = np.array(self.ori_row_cuts + self.ori_col_cuts) # 出现无效调整,直接结束 if not valid_adjust: return state, reward, True, False, {} # 调整合理,计算当前时间 else: rectangles = self.if_valid_partition() if not rectangles: reward = -10 return state, reward, True, False, {} else: # 继续进行路径规划 # 使用遗传算法解多旅行商 best_time, best_path = self.ga_solver(rectangles) # print(best_time) # print(best_path) reward = self.BASE_LINE / best_time if self.partition_step < self.CUT_NUM: done = False else: done = True reward = reward * 3 return state, reward, done, False, best_path def if_valid_partition(self): rectangles = [] for i in range(len(self.ori_row_cuts) - 1): for j in range(len(self.ori_col_cuts) - 1): d = (self.ori_col_cuts[j+1] - self.ori_col_cuts[j]) * self.W * \ (self.ori_row_cuts[i+1] - self.ori_row_cuts[i]) * self.H rho_time_limit = (self.flight_time_factor - self.trans_time_factor) / \ (self.comp_time_factor - self.trans_time_factor) rho_energy_limit = (self.battery_energy_capacity - self.flight_energy_factor * d - self.trans_energy_factor * d) / \ (self.comp_energy_factor * d - self.trans_energy_factor * d) if rho_energy_limit < 0: return [] rho = min(rho_time_limit, rho_energy_limit) flight_time = self.flight_time_factor * d bs_time = self.bs_time_factor * (1 - rho) * d rectangles.append({ 'center': ((self.ori_row_cuts[i] + self.ori_row_cuts[i+1]) * self.H / 2, (self.ori_col_cuts[j+1] + self.ori_col_cuts[j]) * self.W / 2), 'flight_time': flight_time, 'bs_time': bs_time, }) return rectangles # def q_learning_solver(self): # 使用q_learning解多旅行商 # cities: [[x1, x2, x3...], [y1, y2, y3...]] 城市坐标 # rec_center_lt = [rec_info['center'] # for rec_info in rectangles] # cities = np.column_stack(rec_center_lt) # cities = np.column_stack((self.center, cities)) # center_idx = [] # for i in range(self.num_cars - 1): # cities = np.column_stack((cities, self.center)) # center_idx.append(cities.shape[1] - 1) # tsp = mTSP(params=self.params, num_cities=cities.shape[1], cities=cities, num_cars=self.num_cars, # center_idx=center_idx, rectangles=rectangles) # best_time, best_path = tsp.train(self.mTSP_STEPS) def ga_solver(self, rectangles): cities = [self.center] for rec in rectangles: cities.append(rec['center']) cities = np.array(cities) center_idx = [0] for i in range(self.num_cars - 1): cities = np.row_stack((cities, self.center)) center_idx.append(cities.shape[0] - 1) ga = GA(num_drones=self.num_cars, num_city=cities.shape[0], num_total=20, data=cities, to_process_idx=center_idx, rectangles=rectangles) best_path, best_time = ga.run() return best_time, best_path def render(self): if self.phase == 1: print("Phase 1: Initialize maze environment.") print(f"Partition values so far: {self.partition_values}") print(f"Motorcade positon: {self.car_pos}") # input('1111') elif self.phase == 2: print("Phase 2: Play maze.") print(f'Motorcade trajectory: {self.car_traj}') # input('2222')