from utils import str2bool, evaluate_policy, Action_adapter, Action_adapter_reverse, Reward_adapter from datetime import datetime from SAC import SAC_countinuous import gymnasium as gym import os import shutil import argparse import torch # fmt: off import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from env import PartitionMazeEnv # fmt: on '''Hyperparameter Setting''' parser = argparse.ArgumentParser() parser.add_argument('--dvc', type=str, default='cpu', help='running device: cuda or cpu') parser.add_argument('--EnvIdex', type=int, default=0, help='PV1, Lch_Cv2, Humanv4, HCv4, BWv3, BWHv3') parser.add_argument('--write', type=str2bool, default=True, help='Use SummaryWriter to record the training') parser.add_argument('--render', type=str2bool, default=False, help='Render or Not') parser.add_argument('--Loadmodel', type=str2bool, default=False, help='Load pretrained model or Not') parser.add_argument('--ModelIdex', type=int, default=100, help='which model to load') parser.add_argument('--seed', type=int, default=0, help='random seed') parser.add_argument('--Max_train_steps', type=int, default=int(5e8), help='Max training steps') parser.add_argument('--save_interval', type=int, default=int(5e5), help='Model saving interval, in steps.') parser.add_argument('--eval_interval', type=int, default=int(5e3), help='Model evaluating interval, in steps.') parser.add_argument('--update_every', type=int, default=50, help='Training Fraquency, in stpes') parser.add_argument('--gamma', type=float, default=0.99, help='Discounted Factor') parser.add_argument('--net_width', type=int, default=256, help='Hidden net width, s_dim-400-300-a_dim') parser.add_argument('--a_lr', type=float, default=3e-4, help='Learning rate of actor') parser.add_argument('--c_lr', type=float, default=3e-4, help='Learning rate of critic') parser.add_argument('--batch_size', type=int, default=256, help='batch_size of training') parser.add_argument('--alpha', type=float, default=0.12, help='Entropy coefficient') parser.add_argument('--adaptive_alpha', type=str2bool, default=True, help='Use adaptive_alpha or Not') opt = parser.parse_args() opt.dvc = torch.device(opt.dvc) # from str to torch.device print(opt) def main(): EnvName = ['PartitionMaze_SAC_Continuous', 'Pendulum-v1', 'LunarLanderContinuous-v2', 'Humanoid-v4', 'HalfCheetah-v4', 'BipedalWalker-v3', 'BipedalWalkerHardcore-v3'] BrifEnvName = ['PM_SAC_Con', 'PV1', 'LLdV2', 'Humanv4', 'HCv4', 'BWv3', 'BWHv3'] # Build Env # env = gym.make(EnvName[opt.EnvIdex], # render_mode="human" if opt.render else None) # eval_env = gym.make(EnvName[opt.EnvIdex]) env = PartitionMazeEnv() eval_env = PartitionMazeEnv() opt.state_dim = env.observation_space.shape[0] opt.action_dim = env.action_space.shape[0] # remark: action space【-max,max】 opt.max_action = float(env.action_space.high[0]) opt.max_e_steps = 100 print(f'Env:{EnvName[opt.EnvIdex]} state_dim:{opt.state_dim} action_dim:{opt.action_dim} ' f'max_a:{opt.max_action} min_a:{env.action_space.low[0]}') # Seed Everything env_seed = opt.seed torch.manual_seed(opt.seed) torch.cuda.manual_seed(opt.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False print("Random Seed: {}".format(opt.seed)) # Build SummaryWriter to record training curves if opt.write: from torch.utils.tensorboard import SummaryWriter timenow = str(datetime.now())[0:-10] timenow = ' ' + timenow[0:13] + '_' + timenow[-2::] writepath = 'logs/{}'.format(BrifEnvName[opt.EnvIdex]) + timenow if os.path.exists(writepath): shutil.rmtree(writepath) writer = SummaryWriter(log_dir=writepath) # var: transfer argparse to dictionary agent = SAC_countinuous(**vars(opt)) if opt.Loadmodel: agent.load(BrifEnvName[opt.EnvIdex], opt.ModelIdex) if opt.render: while True: score = evaluate_policy(env, agent, turns=1) print('EnvName:', BrifEnvName[opt.EnvIdex], 'score:', score) else: total_steps = 0 while total_steps < opt.Max_train_steps: # Do not use opt.seed directly, or it can overfit to opt.seed s = env.reset(seed=env_seed) env_seed += 1 done = False '''Interact & trian''' while not done: if total_steps < (5*opt.max_e_steps): a = env.action_space.sample() # act∈[-max,max] # a = Action_adapter_reverse(act, opt.max_action) # a∈[-1,1] else: a = agent.select_action(s, deterministic=False) # a∈[-1,1] a = Action_adapter(a, opt.max_action) # act∈[-max,max] s_next, r, dw, tr, info = env.step( a) # dw: dead&win; tr: truncated r = Reward_adapter(r, opt.EnvIdex) done = (dw or tr) agent.replay_buffer.add(s, a, r, s_next, dw) s = s_next total_steps += 1 '''train if it's time''' # train 50 times every 50 steps rather than 1 training per step. Better! if (total_steps >= 2*opt.max_e_steps) and (total_steps % opt.update_every == 0): for j in range(opt.update_every): agent.train() '''record & log''' if total_steps % opt.eval_interval == 0: ep_r = evaluate_policy(eval_env, agent, turns=3) if opt.write: writer.add_scalar( 'ep_r', ep_r, global_step=total_steps) print( f'EnvName:{BrifEnvName[opt.EnvIdex]}, Steps: {int(total_steps/1000)}k, Episode Reward:{ep_r}') '''save model''' if total_steps % opt.save_interval == 0: agent.save(BrifEnvName[opt.EnvIdex], int(total_steps/1000)) env.close() eval_env.close() if __name__ == '__main__': main()