307 lines
13 KiB
Python
307 lines
13 KiB
Python
import random
|
||
import math
|
||
import matplotlib.pyplot as plt
|
||
import matplotlib.patches as patches
|
||
|
||
# 固定随机种子,便于复现
|
||
random.seed(42)
|
||
|
||
# ---------------------------
|
||
# 参数设置
|
||
# ---------------------------
|
||
H = 20 # 区域高度,网格点之间的距离为25m(单位距离)
|
||
W = 25 # 区域宽度
|
||
k = 1 # 系统数量(车-巢-机系统个数)
|
||
num_iterations = 1000000 # 蒙特卡洛模拟迭代次数
|
||
|
||
# 时间系数(单位:秒,每个网格一张照片)
|
||
flight_time_factor = 3 # 每张照片对应的飞行时间,无人机飞行速度为9.5m/s,拍摄照片的时间间隔为3s
|
||
comp_uav_factor = 5 # 无人机上每张照片计算时间,5s
|
||
trans_time_factor = 0.3 # 每张照片传输时间,0.3s
|
||
car_move_time_factor = 2 * 50 # TODO 汽车每单位距离的移动时间,2s,加了一个放大因子
|
||
comp_bs_factor = 5 # 机巢上每张照片计算时间
|
||
|
||
# 其他参数
|
||
flight_energy_factor = 0.05 # 单位:分钟/张
|
||
comp_energy_factor = 0.05 # 计算能耗需要重新估计
|
||
trans_energy_factor = 0.0025
|
||
battery_capacity = 10 # 无人机只进行飞行,续航为30分钟
|
||
# bs_energy_factor =
|
||
# car_energy_factor =
|
||
|
||
# ---------------------------
|
||
# 蒙特卡洛模拟,寻找最佳方案
|
||
# ---------------------------
|
||
best_T = float('inf')
|
||
best_solution = None
|
||
|
||
for iteration in range(num_iterations):
|
||
# 随机生成分区的行分段数与列分段数
|
||
R = random.randint(1, 5) # 行分段数
|
||
C = random.randint(1, 5) # 列分段数
|
||
|
||
# 生成随机的行、列分割边界
|
||
row_boundaries = sorted(random.sample(range(1, H), R - 1))
|
||
row_boundaries = [0] + row_boundaries + [H]
|
||
col_boundaries = sorted(random.sample(range(1, W), C - 1))
|
||
col_boundaries = [0] + col_boundaries + [W]
|
||
|
||
# ---------------------------
|
||
# 根据分割边界生成所有矩形任务
|
||
# ---------------------------
|
||
rectangles = []
|
||
valid_partition = True # 标记此分区是否满足所有约束
|
||
for i in range(len(row_boundaries) - 1):
|
||
for j in range(len(col_boundaries) - 1):
|
||
r1 = row_boundaries[i]
|
||
r2 = row_boundaries[i + 1]
|
||
c1 = col_boundaries[j]
|
||
c2 = col_boundaries[j + 1]
|
||
d = (r2 - r1) * (c2 - c1) # 任务的照片数量(矩形面积)
|
||
|
||
# # 每个任务随机生成卸载比率 ρ ∈ [0,1]
|
||
# rho = random.random()
|
||
# # rho = 0.1
|
||
|
||
# # 计算各个阶段时间
|
||
# flight_time = flight_time_factor * d
|
||
# comp_time = comp_uav_factor * rho * d
|
||
# trans_time = trans_time_factor * (1 - rho) * d
|
||
# comp_bs_time = comp_bs_factor * (1 - rho) * d
|
||
|
||
# # 检查无人机电池约束:
|
||
# # 飞行+计算+传输能耗需不超过电池容量
|
||
# flight_energy = flight_energy_factor * d
|
||
# comp_energy = comp_energy_factor * rho * d
|
||
# trans_energy = trans_energy_factor * (1 - rho) * d
|
||
# total_uav_energy = flight_energy + comp_energy + trans_energy
|
||
# # 无人机计算与传输时间不超过飞行时间
|
||
# if (total_uav_energy > battery_capacity) or (comp_time + trans_time > flight_time):
|
||
# # TODO 时间约束的rho上界是个常数0.57,如果区域划分定了,rho直接取上界即可,可以数学证明
|
||
# valid_partition = False
|
||
# break
|
||
|
||
# 求解rho
|
||
rho_time_limit = (flight_time_factor - trans_time_factor) / \
|
||
(comp_uav_factor - trans_time_factor)
|
||
rho_energy_limit = (battery_capacity - flight_energy_factor * d - trans_energy_factor * d) / \
|
||
(comp_energy_factor * d - trans_energy_factor * d)
|
||
if rho_energy_limit < 0:
|
||
valid_partition = False
|
||
break
|
||
rho = min(rho_time_limit, rho_energy_limit)
|
||
print(rho)
|
||
flight_time = flight_time_factor * d
|
||
comp_time = comp_uav_factor * rho * d
|
||
trans_time = trans_time_factor * (1 - rho) * d
|
||
comp_bs_time = comp_bs_factor * (1 - rho) * d
|
||
|
||
# 计算任务矩形中心,用于后续车辆移动时间计算
|
||
center_r = (r1 + r2) / 2.0
|
||
center_c = (c1 + c2) / 2.0
|
||
|
||
rectangles.append({
|
||
'r1': r1, 'r2': r2, 'c1': c1, 'c2': c2,
|
||
'd': d,
|
||
'rho': rho,
|
||
'flight_time': flight_time,
|
||
'comp_time': comp_time,
|
||
'trans_time': trans_time,
|
||
'comp_bs_time': comp_bs_time,
|
||
'center': (center_r, center_c)
|
||
})
|
||
if not valid_partition:
|
||
break
|
||
|
||
# 如果分区中存在任务不满足电池约束,则跳过该分区
|
||
if not valid_partition:
|
||
continue
|
||
|
||
# ---------------------------
|
||
# 随机将所有矩形任务分配给 k 个系统(车-机-巢)
|
||
# ---------------------------
|
||
system_tasks = {i: [] for i in range(k)}
|
||
for rect in rectangles:
|
||
system = random.randint(0, k - 1)
|
||
system_tasks[system].append(rect)
|
||
|
||
# ---------------------------
|
||
# 对于每个系统,计算该系统的总完成时间 T_k:
|
||
# T_k = 所有任务的飞行时间之和 + 车辆的移动时间
|
||
# 车辆移动时间:车辆从区域中心出发,依次经过各任务中心(顺序采用距离区域中心的启发式排序)
|
||
# ---------------------------
|
||
region_center = (H / 2.0, W / 2.0)
|
||
T_k_list = []
|
||
for i in range(k):
|
||
tasks = system_tasks[i]
|
||
tasks.sort(key=lambda r: math.hypot(r['center'][0] - region_center[0],
|
||
r['center'][1] - region_center[1]))
|
||
total_flight_time = sum(task['flight_time'] for task in tasks)
|
||
if tasks:
|
||
# 车辆从区域中心到第一个任务中心
|
||
car_time = math.hypot(tasks[0]['center'][0] - region_center[0],
|
||
tasks[0]['center'][1] - region_center[1]) * car_move_time_factor
|
||
# 依次经过任务中心
|
||
for j in range(1, len(tasks)):
|
||
prev_center = tasks[j - 1]['center']
|
||
curr_center = tasks[j]['center']
|
||
car_time += math.hypot(curr_center[0] - prev_center[0],
|
||
curr_center[1] - prev_center[1]) * car_move_time_factor
|
||
else:
|
||
car_time = 0
|
||
|
||
# 机巢的计算时间
|
||
total_bs_time = sum(task['comp_bs_time'] for task in tasks)
|
||
T_k = max(total_flight_time + car_time, total_bs_time)
|
||
T_k_list.append(T_k)
|
||
|
||
T_max = max(T_k_list) # 整体目标 T 为各系统中最大的 T_k
|
||
|
||
# TODO 没有限制系统的总能耗
|
||
|
||
if T_max < best_T:
|
||
best_T = T_max
|
||
best_solution = {
|
||
'system_tasks': system_tasks,
|
||
'T_k_list': T_k_list,
|
||
'T_max': T_max,
|
||
'iteration': iteration,
|
||
'R': R,
|
||
'C': C,
|
||
'row_boundaries': row_boundaries,
|
||
'col_boundaries': col_boundaries
|
||
}
|
||
|
||
# ---------------------------
|
||
# 输出最佳方案
|
||
# ---------------------------
|
||
if best_solution is not None:
|
||
print("最佳 T (各系统中最长的完成时间):", best_solution['T_max'])
|
||
for i in range(k):
|
||
num_tasks = len(best_solution['system_tasks'][i])
|
||
print(
|
||
f"系统 {i}: 完成时间 T = {best_solution['T_k_list'][i]}, 飞行任务数量: {num_tasks}")
|
||
else:
|
||
print("在给定的模拟次数内未找到满足所有约束的方案。")
|
||
|
||
# 在输出最佳方案后添加详细信息
|
||
if best_solution is not None:
|
||
print("\n各系统详细信息:")
|
||
region_center = (H / 2.0, W / 2.0)
|
||
|
||
for system_id, tasks in best_solution['system_tasks'].items():
|
||
print(f"\n系统 {system_id} 的任务详情:")
|
||
|
||
# 按距离区域中心的距离排序任务
|
||
tasks_sorted = sorted(tasks, key=lambda r: math.hypot(r['center'][0] - region_center[0],
|
||
r['center'][1] - region_center[1]))
|
||
|
||
if tasks_sorted:
|
||
print(
|
||
f"轨迹路线: 区域中心({region_center[0]:.1f}, {region_center[1]:.1f})", end="")
|
||
current_pos = region_center
|
||
total_car_time = 0
|
||
total_flight_time = 0
|
||
total_flight_energy = 0
|
||
total_comp_energy = 0
|
||
total_trans_energy = 0
|
||
|
||
for i, task in enumerate(tasks_sorted, 1):
|
||
# 计算车辆移动时间
|
||
car_time = math.hypot(task['center'][0] - current_pos[0],
|
||
task['center'][1] - current_pos[1]) * car_move_time_factor
|
||
total_car_time += car_time
|
||
|
||
# 更新当前位置
|
||
current_pos = task['center']
|
||
print(
|
||
f" -> 任务{i}({current_pos[0]:.1f}, {current_pos[1]:.1f})", end="")
|
||
|
||
# 累加各项数据
|
||
total_flight_time += task['flight_time']
|
||
total_flight_energy += flight_energy_factor * task['d']
|
||
total_comp_energy += comp_energy_factor * \
|
||
task['rho'] * task['d']
|
||
total_trans_energy += trans_energy_factor * \
|
||
(1 - task['rho']) * task['d']
|
||
|
||
print("\n")
|
||
print(f"任务数量: {len(tasks_sorted)}")
|
||
print(f"车辆总移动时间: {total_car_time:.2f} 秒")
|
||
print(f"无人机总飞行时间: {total_flight_time:.2f} 秒")
|
||
print(f"能耗统计:")
|
||
print(f" - 飞行能耗: {total_flight_energy:.2f} 分钟")
|
||
print(f" - 计算能耗: {total_comp_energy:.2f} 分钟")
|
||
print(f" - 传输能耗: {total_trans_energy:.2f} 分钟")
|
||
print(
|
||
f" - 总能耗: {(total_flight_energy + total_comp_energy + total_trans_energy):.2f} 分钟")
|
||
|
||
print("\n各任务详细信息:")
|
||
for i, task in enumerate(tasks_sorted, 1):
|
||
print(f"\n任务{i}:")
|
||
print(
|
||
f" 位置: ({task['center'][0]:.1f}, {task['center'][1]:.1f})")
|
||
print(f" 照片数量: {task['d']}")
|
||
print(f" 卸载比率(ρ): {task['rho']:.2f}")
|
||
print(f" 飞行时间: {task['flight_time']:.2f} 秒")
|
||
print(f" 计算时间: {task['comp_time']:.2f} 秒")
|
||
print(f" 传输时间: {task['trans_time']:.2f} 秒")
|
||
print(f" -- 飞行能耗: {task['d'] * flight_energy_factor:.2f} 分钟")
|
||
print(f" -- 计算能耗: {task['d'] * comp_energy_factor:.2f} 分钟")
|
||
print(f" -- 传输能耗: {task['d'] * trans_energy_factor:.2f} 分钟")
|
||
print(f" 基站计算时间: {task['comp_bs_time']:.2f} 秒")
|
||
else:
|
||
print("该系统没有分配任务")
|
||
print("-" * 50)
|
||
|
||
if best_solution is not None:
|
||
plt.rcParams['font.family'] = ['sans-serif']
|
||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||
fig, ax = plt.subplots()
|
||
ax.set_xlim(0, W)
|
||
ax.set_ylim(0, H)
|
||
ax.set_title("区域划分与车-机-巢系统覆盖")
|
||
ax.set_xlabel("区域宽度")
|
||
ax.set_ylabel("区域高度")
|
||
|
||
# 定义若干颜色以区分不同系统(系统编号从0开始)
|
||
colors = ['red', 'blue', 'green', 'orange', 'purple', 'cyan', 'magenta']
|
||
|
||
# 绘制区域中心
|
||
region_center = (W / 2.0, H / 2.0) # 注意:x对应宽度,y对应高度
|
||
ax.plot(region_center[0], region_center[1],
|
||
'ko', markersize=8, label="区域中心")
|
||
|
||
# 绘制每个任务区域(矩形)及在矩形中心标注系统编号与卸载比率 ρ
|
||
for system_id, tasks in best_solution['system_tasks'].items():
|
||
# 重新按车辆行驶顺序排序(启发式:以任务中心距离区域中心的距离排序)
|
||
tasks_sorted = sorted(tasks, key=lambda task: math.hypot(
|
||
(task['c1'] + (task['c2'] - task['c1']) / 2.0) - region_center[0],
|
||
(task['r1'] + (task['r2'] - task['r1']) / 2.0) - region_center[1]
|
||
))
|
||
|
||
for i, task in enumerate(tasks_sorted, 1):
|
||
# 绘制矩形:左下角坐标为 (c1, r1),宽度为 (c2 - c1),高度为 (r2 - r1)
|
||
rect = patches.Rectangle((task['c1'], task['r1']),
|
||
task['c2'] - task['c1'],
|
||
task['r2'] - task['r1'],
|
||
linewidth=2,
|
||
edgecolor=colors[system_id % len(colors)],
|
||
facecolor='none')
|
||
ax.add_patch(rect)
|
||
# 计算矩形中心
|
||
center_x = task['c1'] + (task['c2'] - task['c1']) / 2.0
|
||
center_y = task['r1'] + (task['r2'] - task['r1']) / 2.0
|
||
# 在矩形中心标注:系统编号、执行顺序和卸载比率 ρ
|
||
ax.text(center_x, center_y, f"S{system_id}-{i}\nρ={task['rho']:.2f}",
|
||
color=colors[system_id % len(colors)],
|
||
ha='center', va='center', fontsize=10, fontweight='bold')
|
||
|
||
# 添加图例
|
||
ax.legend()
|
||
# 反转 y 轴使得行号从上到下递增(如需,可取消)
|
||
ax.invert_yaxis()
|
||
plt.show()
|
||
else:
|
||
print("没有找到满足约束条件的方案,无法进行可视化。")
|