HPCC2025/PPO_Continuous/PPO.py
weixin_46229132 5b468deb9d SAC
2025-03-21 16:04:42 +08:00

145 lines
5.8 KiB
Python

from utils import BetaActor, GaussianActor_musigma, GaussianActor_mu, Critic
import numpy as np
import copy
import torch
import math
class PPO_agent(object):
def __init__(self, **kwargs):
# Init hyperparameters for PPO agent, just like "self.gamma = opt.gamma, self.lambd = opt.lambd, ..."
self.__dict__.update(kwargs)
# Choose distribution for the actor
if self.Distribution == 'Beta':
self.actor = BetaActor(self.state_dim, self.action_dim, self.net_width).to(self.dvc)
elif self.Distribution == 'GS_ms':
self.actor = GaussianActor_musigma(self.state_dim, self.action_dim, self.net_width).to(self.dvc)
elif self.Distribution == 'GS_m':
self.actor = GaussianActor_mu(self.state_dim, self.action_dim, self.net_width).to(self.dvc)
else: print('Dist Error')
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=self.a_lr)
# Build Critic
self.critic = Critic(self.state_dim, self.net_width).to(self.dvc)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=self.c_lr)
# Build Trajectory holder
self.s_hoder = np.zeros((self.T_horizon, self.state_dim),dtype=np.float32)
self.a_hoder = np.zeros((self.T_horizon, self.action_dim),dtype=np.float32)
self.r_hoder = np.zeros((self.T_horizon, 1),dtype=np.float32)
self.s_next_hoder = np.zeros((self.T_horizon, self.state_dim),dtype=np.float32)
self.logprob_a_hoder = np.zeros((self.T_horizon, self.action_dim),dtype=np.float32)
self.done_hoder = np.zeros((self.T_horizon, 1),dtype=np.bool_)
self.dw_hoder = np.zeros((self.T_horizon, 1),dtype=np.bool_)
def select_action(self, state, deterministic):
with torch.no_grad():
state = torch.FloatTensor(state.reshape(1, -1)).to(self.dvc)
if deterministic:
# only used when evaluate the policy.Making the performance more stable
a = self.actor.deterministic_act(state)
return a.cpu().numpy()[0], None # action is in shape (adim, 0)
else:
# only used when interact with the env
dist = self.actor.get_dist(state)
a = dist.sample()
a = torch.clamp(a, 0, 1)
logprob_a = dist.log_prob(a).cpu().numpy().flatten()
return a.cpu().numpy()[0], logprob_a # both are in shape (adim, 0)
def train(self):
self.entropy_coef*=self.entropy_coef_decay
'''Prepare PyTorch data from Numpy data'''
s = torch.from_numpy(self.s_hoder).to(self.dvc)
a = torch.from_numpy(self.a_hoder).to(self.dvc)
r = torch.from_numpy(self.r_hoder).to(self.dvc)
s_next = torch.from_numpy(self.s_next_hoder).to(self.dvc)
logprob_a = torch.from_numpy(self.logprob_a_hoder).to(self.dvc)
done = torch.from_numpy(self.done_hoder).to(self.dvc)
dw = torch.from_numpy(self.dw_hoder).to(self.dvc)
''' Use TD+GAE+LongTrajectory to compute Advantage and TD target'''
with torch.no_grad():
vs = self.critic(s)
vs_ = self.critic(s_next)
'''dw for TD_target and Adv'''
deltas = r + self.gamma * vs_ * (~dw) - vs
deltas = deltas.cpu().flatten().numpy()
adv = [0]
'''done for GAE'''
for dlt, mask in zip(deltas[::-1], done.cpu().flatten().numpy()[::-1]):
advantage = dlt + self.gamma * self.lambd * adv[-1] * (~mask)
adv.append(advantage)
adv.reverse()
adv = copy.deepcopy(adv[0:-1])
adv = torch.tensor(adv).unsqueeze(1).float().to(self.dvc)
td_target = adv + vs
adv = (adv - adv.mean()) / ((adv.std()+1e-4)) #sometimes helps
"""Slice long trajectopy into short trajectory and perform mini-batch PPO update"""
a_optim_iter_num = int(math.ceil(s.shape[0] / self.a_optim_batch_size))
c_optim_iter_num = int(math.ceil(s.shape[0] / self.c_optim_batch_size))
for i in range(self.K_epochs):
#Shuffle the trajectory, Good for training
perm = np.arange(s.shape[0])
np.random.shuffle(perm)
perm = torch.LongTensor(perm).to(self.dvc)
s, a, td_target, adv, logprob_a = \
s[perm].clone(), a[perm].clone(), td_target[perm].clone(), adv[perm].clone(), logprob_a[perm].clone()
'''update the actor'''
for i in range(a_optim_iter_num):
index = slice(i * self.a_optim_batch_size, min((i + 1) * self.a_optim_batch_size, s.shape[0]))
distribution = self.actor.get_dist(s[index])
dist_entropy = distribution.entropy().sum(1, keepdim=True)
logprob_a_now = distribution.log_prob(a[index])
ratio = torch.exp(logprob_a_now.sum(1,keepdim=True) - logprob_a[index].sum(1,keepdim=True)) # a/b == exp(log(a)-log(b))
surr1 = ratio * adv[index]
surr2 = torch.clamp(ratio, 1 - self.clip_rate, 1 + self.clip_rate) * adv[index]
a_loss = -torch.min(surr1, surr2) - self.entropy_coef * dist_entropy
self.actor_optimizer.zero_grad()
a_loss.mean().backward()
torch.nn.utils.clip_grad_norm_(self.actor.parameters(), 40)
self.actor_optimizer.step()
'''update the critic'''
for i in range(c_optim_iter_num):
index = slice(i * self.c_optim_batch_size, min((i + 1) * self.c_optim_batch_size, s.shape[0]))
c_loss = (self.critic(s[index]) - td_target[index]).pow(2).mean()
for name,param in self.critic.named_parameters():
if 'weight' in name:
c_loss += param.pow(2).sum() * self.l2_reg
self.critic_optimizer.zero_grad()
c_loss.backward()
self.critic_optimizer.step()
def put_data(self, s, a, r, s_next, logprob_a, done, dw, idx):
self.s_hoder[idx] = s
self.a_hoder[idx] = a
self.r_hoder[idx] = r
self.s_next_hoder[idx] = s_next
self.logprob_a_hoder[idx] = logprob_a
self.done_hoder[idx] = done
self.dw_hoder[idx] = dw
def save(self,EnvName, timestep):
torch.save(self.actor.state_dict(), "./weights/{}_actor{}.pth".format(EnvName,timestep))
torch.save(self.critic.state_dict(), "./weights/{}_q_critic{}.pth".format(EnvName,timestep))
def load(self,EnvName, timestep):
self.actor.load_state_dict(torch.load("./weights/{}_actor{}.pth".format(EnvName, timestep), map_location=self.dvc))
self.critic.load_state_dict(torch.load("./weights/{}_q_critic{}.pth".format(EnvName, timestep), map_location=self.dvc))