HPCC2025/DQN/env_partition.py
2025-03-09 16:53:01 +08:00

89 lines
2.8 KiB
Python

import numpy as np
import gym
from gym import spaces
class PartitionEnv(gym.Env):
"""区域划分环境(第一层)"""
def __init__(self):
super(PartitionEnv, self).__init__()
# 环境参数
self.H = 20 # 区域高度
self.W = 25 # 区域宽度
self.k = 1 # 系统数量
# 动作空间:[垂直切割数, 水平切割数]
self.action_space = spaces.Box(
low=np.array([1, 1]),
high=np.array([5, 5]),
dtype=np.float32
)
# 状态空间:[当前垂直切割数, 当前水平切割数, 当前最大完成时间]
self.observation_space = spaces.Box(
low=np.array([1, 1, 0]),
high=np.array([5, 5, float('inf')]),
dtype=np.float32
)
self.state = None
self.current_step = 0
self.max_steps = 1000
def generate_subareas(self, v_cuts, h_cuts):
"""生成子区域信息"""
v_boundaries = np.linspace(0, self.H, v_cuts + 1)
h_boundaries = np.linspace(0, self.W, h_cuts + 1)
subareas = []
for i in range(len(v_boundaries) - 1):
for j in range(len(h_boundaries) - 1):
height = v_boundaries[i+1] - v_boundaries[i]
width = h_boundaries[j+1] - h_boundaries[j]
center_y = (v_boundaries[i] + v_boundaries[i+1]) / 2
center_x = (h_boundaries[j] + h_boundaries[j+1]) / 2
subareas.append({
'height': height,
'width': width,
'area': height * width,
'center': (center_y, center_x)
})
return subareas
def step(self, action):
self.current_step += 1
# 解析动作
v_cuts = int(action[0]) # 垂直切割数
h_cuts = int(action[1]) # 水平切割数
# 生成子区域
subareas = self.generate_subareas(v_cuts, h_cuts)
# 调用第二层(任务分配)获取结果
from env_allocation import AllocationEnv
alloc_env = AllocationEnv(subareas, self.k)
total_time, valid = alloc_env.optimize()
# 计算奖励
if not valid:
reward = -10000 # 惩罚无效方案
done = True
else:
reward = -total_time # 负的完成时间作为奖励
done = self.current_step >= self.max_steps
# 更新状态
self.state = np.array([v_cuts, h_cuts, total_time])
return self.state, reward, done, {}
def reset(self):
self.state = np.array([1, 1, 0])
self.current_step = 0
return self.state
def render(self, mode='human'):
pass