204 lines
7.6 KiB
Python
204 lines
7.6 KiB
Python
import gymnasium as gym
|
||
from gymnasium import spaces
|
||
import numpy as np
|
||
import yaml
|
||
import math
|
||
from mTSP_solver import mTSP
|
||
from GA.ga import GA
|
||
|
||
|
||
class PartitionEnv(gym.Env):
|
||
"""
|
||
自定义环境,分为两阶段:
|
||
区域切分,每一次切分都是(0, 1)之间的连续值
|
||
"""
|
||
|
||
def __init__(self, config=None):
|
||
super(PartitionEnv, self).__init__()
|
||
##############################
|
||
# 可能需要手动修改的超参数
|
||
##############################
|
||
self.params = 'params2'
|
||
self.ORI_ROW_CUTS = [0, 0.2, 0.4, 0.7, 1]
|
||
self.ORI_COL_CUTS = [0, 0.5, 1]
|
||
self.CUT_NUM = 4
|
||
self.ROW_CUT_LIMIT = 3
|
||
self.COL_CUT_LIMIT = 1
|
||
self.BASE_LINE = 10000
|
||
self.mTSP_STEPS = 10000
|
||
|
||
# 定义动作空间:全部动作均为 1 维连续 [0,1]
|
||
self.action_space = spaces.Box(
|
||
low=-0.1, high=0.1, shape=(1,), dtype=np.float32)
|
||
|
||
# 定义观察空间为8维向量
|
||
# 前 4 维表示已决策的切分值(未决策部分为 0)
|
||
self.observation_space = spaces.Box(
|
||
low=0.0, high=1.0, shape=(self.CUT_NUM + 4,), dtype=np.float32)
|
||
|
||
self.partition_step = 0
|
||
self.ori_row_cuts = self.ORI_ROW_CUTS[:]
|
||
self.ori_col_cuts = self.ORI_COL_CUTS[:]
|
||
self.rectangles = []
|
||
|
||
# 车队参数设置
|
||
with open(self.params + '.yml', 'r', encoding='utf-8') as file:
|
||
params = yaml.safe_load(file)
|
||
|
||
self.H = params['H']
|
||
self.W = params['W']
|
||
self.center = (self.H/2, self.W/2)
|
||
self.num_cars = params['num_cars']
|
||
|
||
self.flight_time_factor = params['flight_time_factor']
|
||
self.comp_time_factor = params['comp_time_factor']
|
||
self.trans_time_factor = params['trans_time_factor']
|
||
self.car_time_factor = params['car_time_factor']
|
||
self.bs_time_factor = params['bs_time_factor']
|
||
|
||
self.flight_energy_factor = params['flight_energy_factor']
|
||
self.comp_energy_factor = params['comp_energy_factor']
|
||
self.trans_energy_factor = params['trans_energy_factor']
|
||
self.battery_energy_capacity = params['battery_energy_capacity']
|
||
|
||
def reset(self, seed=None, options=None):
|
||
# 重置所有变量,回到切分阶段(phase 0)
|
||
self.phase = 0
|
||
self.partition_step = 0
|
||
self.ori_row_cuts = self.ORI_ROW_CUTS[:]
|
||
self.ori_col_cuts = self.ORI_COL_CUTS[:]
|
||
self.rectangles = []
|
||
|
||
# 状态:前 4 维为 partition_values,其余为区域访问状态(初始全0)
|
||
state = np.array(self.ori_row_cuts + self.ori_col_cuts)
|
||
|
||
return state
|
||
|
||
def step(self, action):
|
||
# 在所有阶段动作均为 1 维连续动作,取 action[0]
|
||
adjust = float(action[0])
|
||
valid_adjust = True
|
||
|
||
if self.partition_step < self.ROW_CUT_LIMIT:
|
||
row_cut = self.ori_row_cuts[self.partition_step + 1]
|
||
new_row_cut = row_cut + adjust
|
||
self.ori_row_cuts[self.partition_step + 1] = new_row_cut
|
||
|
||
if self.ori_row_cuts[self.partition_step] < new_row_cut < self.ori_row_cuts[self.partition_step + 2]:
|
||
pass
|
||
else:
|
||
valid_adjust = False
|
||
reward = -100
|
||
else:
|
||
col_idx = self.partition_step - self.ROW_CUT_LIMIT
|
||
col_cut = self.ori_col_cuts[col_idx + 1]
|
||
new_col_cut = col_cut + adjust
|
||
self.ori_col_cuts[col_idx + 1] = new_col_cut
|
||
|
||
if self.ori_col_cuts[col_idx] < new_col_cut < self.ori_col_cuts[col_idx + 2]:
|
||
pass
|
||
else:
|
||
valid_adjust = False
|
||
reward = -100
|
||
|
||
self.partition_step += 1
|
||
|
||
state = np.array(self.ori_row_cuts + self.ori_col_cuts)
|
||
|
||
# 出现无效调整,直接结束
|
||
if not valid_adjust:
|
||
return state, reward, True, False, {}
|
||
# 调整合理,计算当前时间
|
||
else:
|
||
rectangles = self.if_valid_partition()
|
||
|
||
if not rectangles:
|
||
reward = -10
|
||
return state, reward, True, False, {}
|
||
else:
|
||
# 继续进行路径规划
|
||
# 使用遗传算法解多旅行商
|
||
best_time, best_path = self.ga_solver(rectangles)
|
||
# print(best_time)
|
||
# print(best_path)
|
||
|
||
reward = self.BASE_LINE / best_time
|
||
if self.partition_step < self.CUT_NUM:
|
||
done = False
|
||
else:
|
||
done = True
|
||
reward = reward * 3
|
||
|
||
return state, reward, done, False, best_path
|
||
|
||
def if_valid_partition(self):
|
||
rectangles = []
|
||
for i in range(len(self.ori_row_cuts) - 1):
|
||
for j in range(len(self.ori_col_cuts) - 1):
|
||
d = (self.ori_col_cuts[j+1] - self.ori_col_cuts[j]) * self.W * \
|
||
(self.ori_row_cuts[i+1] -
|
||
self.ori_row_cuts[i]) * self.H
|
||
rho_time_limit = (self.flight_time_factor - self.trans_time_factor) / \
|
||
(self.comp_time_factor - self.trans_time_factor)
|
||
rho_energy_limit = (self.battery_energy_capacity - self.flight_energy_factor * d - self.trans_energy_factor * d) / \
|
||
(self.comp_energy_factor * d -
|
||
self.trans_energy_factor * d)
|
||
if rho_energy_limit < 0:
|
||
return []
|
||
rho = min(rho_time_limit, rho_energy_limit)
|
||
|
||
flight_time = self.flight_time_factor * d
|
||
bs_time = self.bs_time_factor * (1 - rho) * d
|
||
|
||
rectangles.append({
|
||
'center': ((self.ori_row_cuts[i] + self.ori_row_cuts[i+1]) * self.H / 2, (self.ori_col_cuts[j+1] + self.ori_col_cuts[j]) * self.W / 2),
|
||
'flight_time': flight_time,
|
||
'bs_time': bs_time,
|
||
})
|
||
return rectangles
|
||
|
||
# def q_learning_solver(self):
|
||
# 使用q_learning解多旅行商
|
||
# cities: [[x1, x2, x3...], [y1, y2, y3...]] 城市坐标
|
||
# rec_center_lt = [rec_info['center']
|
||
# for rec_info in rectangles]
|
||
# cities = np.column_stack(rec_center_lt)
|
||
# cities = np.column_stack((self.center, cities))
|
||
|
||
# center_idx = []
|
||
# for i in range(self.num_cars - 1):
|
||
# cities = np.column_stack((cities, self.center))
|
||
# center_idx.append(cities.shape[1] - 1)
|
||
|
||
# tsp = mTSP(params=self.params, num_cities=cities.shape[1], cities=cities, num_cars=self.num_cars,
|
||
# center_idx=center_idx, rectangles=rectangles)
|
||
|
||
# best_time, best_path = tsp.train(self.mTSP_STEPS)
|
||
|
||
def ga_solver(self, rectangles):
|
||
cities = [self.center]
|
||
for rec in rectangles:
|
||
cities.append(rec['center'])
|
||
cities = np.array(cities)
|
||
|
||
center_idx = [0]
|
||
for i in range(self.num_cars - 1):
|
||
cities = np.row_stack((cities, self.center))
|
||
center_idx.append(cities.shape[0] - 1)
|
||
|
||
ga = GA(num_drones=self.num_cars, num_city=cities.shape[0], num_total=20,
|
||
data=cities, to_process_idx=center_idx, rectangles=rectangles)
|
||
best_path, best_time = ga.run()
|
||
return best_time, best_path
|
||
|
||
def render(self):
|
||
if self.phase == 1:
|
||
print("Phase 1: Initialize maze environment.")
|
||
print(f"Partition values so far: {self.partition_values}")
|
||
print(f"Motorcade positon: {self.car_pos}")
|
||
# input('1111')
|
||
elif self.phase == 2:
|
||
print("Phase 2: Play maze.")
|
||
print(f'Motorcade trajectory: {self.car_traj}')
|
||
# input('2222')
|