ODM_pro/odm_preprocess.py

179 lines
5.9 KiB
Python
Raw Permalink Normal View History

2024-12-17 22:09:47 +08:00
import os
import shutil
2024-12-21 12:03:54 +08:00
from datetime import timedelta
2024-12-17 22:09:47 +08:00
from dataclasses import dataclass
from typing import Dict
import matplotlib.pyplot as plt
import pandas as pd
2024-12-17 22:09:47 +08:00
from tqdm import tqdm
2024-12-22 20:10:06 +08:00
from filter.cluster_filter import GPSCluster
from utils.command_runner import CommandRunner
from utils.gps_extractor import GPSExtractor
from filter.gps_filter import GPSFilter
from utils.grid_divider import GridDivider
from utils.logger import setup_logger
from filter.time_group_overlap_filter import TimeGroupOverlapFilter
2024-12-22 20:19:12 +08:00
from utils.visualizer import FilterVisualizer
2024-12-17 22:09:47 +08:00
@dataclass
class PreprocessConfig:
"""预处理配置类"""
2024-12-17 22:09:47 +08:00
image_dir: str
output_dir: str
2024-12-21 12:03:54 +08:00
# 聚类过滤参数
cluster_eps: float = 0.01
cluster_min_samples: int = 5
2024-12-22 20:10:06 +08:00
# 时间组重叠过滤参数
time_group_overlap_threshold: float = 0.7
time_group_interval: timedelta = timedelta(minutes=5)
enable_time_group_filter: bool = True
2024-12-21 12:03:54 +08:00
# 孤立点过滤参数
2024-12-22 20:10:06 +08:00
filter_distance_threshold: float = 0.001 # 经纬度距离
2024-12-17 22:09:47 +08:00
filter_min_neighbors: int = 6
2024-12-21 12:03:54 +08:00
# 密集点过滤参数
filter_grid_size: float = 0.001
2024-12-22 20:10:06 +08:00
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
2024-12-21 12:03:54 +08:00
filter_time_threshold: timedelta = timedelta(minutes=5)
# 网格划分参数
2024-12-17 22:09:47 +08:00
grid_overlap: float = 0.05
2024-12-20 21:10:22 +08:00
grid_size: float = 500
2024-12-21 12:03:54 +08:00
# 几个pipline过程是否开启
2024-12-17 22:09:47 +08:00
enable_filter: bool = True
enable_grid_division: bool = True
enable_visualization: bool = True
enable_copy_images: bool = True
2024-12-21 12:03:54 +08:00
mode: str = "快拼模式"
2024-12-17 22:09:47 +08:00
2024-12-22 20:10:06 +08:00
2024-12-17 22:09:47 +08:00
class ImagePreprocessor:
def __init__(self, config: PreprocessConfig):
self.config = config
self.logger = setup_logger(config.output_dir)
2024-12-22 20:19:12 +08:00
self.gps_points = None
self.command_runner = CommandRunner(config.output_dir, mode=config.mode)
self.visualizer = FilterVisualizer(config.output_dir)
# 用于存储每个步骤的点数据
self.points_history = []
self.step_names = []
2024-12-17 22:09:47 +08:00
def extract_gps(self) -> pd.DataFrame:
2024-12-17 22:09:47 +08:00
"""提取GPS数据"""
self.logger.info("开始提取GPS数据")
extractor = GPSExtractor(self.config.image_dir)
self.gps_points = extractor.extract_all_gps()
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
2024-12-22 20:19:12 +08:00
# 记录初始状态
self.points_history.append(self.gps_points.copy())
self.step_names.append("Initial")
2024-12-17 22:09:47 +08:00
return self.gps_points
2024-12-18 21:07:47 +08:00
def cluster(self) -> pd.DataFrame:
2024-12-22 20:19:12 +08:00
"""使用DBSCAN对GPS点进行聚类"""
self.logger.info("开始聚类")
2024-12-22 20:19:12 +08:00
previous_points = self.gps_points.copy()
2024-12-21 10:44:25 +08:00
clusterer = GPSCluster(
2024-12-21 12:03:54 +08:00
self.gps_points, output_dir=self.config.output_dir,
eps=self.config.cluster_eps, min_samples=self.config.cluster_min_samples)
2024-12-22 20:10:06 +08:00
self.clustered_points = clusterer.fit()
2024-12-21 12:03:54 +08:00
self.gps_points = clusterer.get_main_cluster(self.clustered_points)
2024-12-22 20:19:12 +08:00
# 可视化聚类结果
if self.config.enable_visualization:
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "Clustering")
# 记录这一步的结果
self.points_history.append(self.gps_points.copy())
self.step_names.append("Clustering")
return self.gps_points
2024-12-22 20:10:06 +08:00
def filter_time_group_overlap(self) -> pd.DataFrame:
"""过滤重叠的时间组"""
if not self.config.enable_time_group_filter:
return self.gps_points
self.logger.info("开始过滤重叠时间组")
2024-12-22 20:19:12 +08:00
previous_points = self.gps_points.copy()
2024-12-22 20:10:06 +08:00
filter = TimeGroupOverlapFilter(
self.config.image_dir,
self.config.output_dir,
overlap_threshold=self.config.time_group_overlap_threshold
)
deleted_files = filter.filter_overlapping_groups(
time_threshold=self.config.time_group_interval
)
2024-12-22 20:19:12 +08:00
self.gps_points = self.gps_points[~self.gps_points['file'].isin(deleted_files)]
# 可视化过滤结果
if self.config.enable_visualization:
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "Time Group Overlap")
# 记录这一步的结果
self.points_history.append(self.gps_points.copy())
self.step_names.append("Time Group Overlap")
2024-12-17 22:09:47 +08:00
return self.gps_points
def process(self):
"""执行完整的预处理流程"""
2024-12-18 21:07:47 +08:00
try:
2024-12-17 22:09:47 +08:00
self.extract_gps()
self.cluster()
2024-12-22 20:10:06 +08:00
self.filter_time_group_overlap()
2024-12-22 20:19:12 +08:00
# 在处理结束时生成所有步骤的可视化
if self.config.enable_visualization:
self.visualizer.visualize_all_steps(
self.points_history, self.step_names)
self.logger.info("预处理任务完成")
2024-12-17 22:09:47 +08:00
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
raise
if __name__ == "__main__":
2024-12-17 22:09:47 +08:00
# 创建配置
config = PreprocessConfig(
2024-12-22 20:10:06 +08:00
image_dir=r"F:\error_data\20241016140912\code\images",
output_dir=r"G:\output",
2024-12-21 12:03:54 +08:00
cluster_eps=0.01,
cluster_min_samples=5,
2024-12-22 20:10:06 +08:00
# 添加时间组重叠过滤参数
time_group_overlap_threshold=0.7,
time_group_interval=timedelta(minutes=5),
enable_time_group_filter=True,
2024-12-17 22:09:47 +08:00
filter_distance_threshold=0.001,
filter_min_neighbors=6,
2024-12-21 12:03:54 +08:00
filter_grid_size=0.001,
filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5),
2024-12-21 12:36:14 +08:00
grid_overlap=0.03,
2024-12-22 16:11:55 +08:00
grid_size=1000,
2024-12-21 12:03:54 +08:00
enable_filter=True,
2024-12-17 22:09:47 +08:00
enable_grid_division=True,
enable_visualization=True,
enable_copy_images=True,
2024-12-22 20:10:06 +08:00
mode="快拼模式",
2024-12-17 22:09:47 +08:00
)
# 创建处理器并执行
processor = ImagePreprocessor(config)
processor.process()