ODM_pro/odm_preprocess.py

164 lines
6.3 KiB
Python
Raw Normal View History

2024-12-17 22:09:47 +08:00
from gps_extractor import GPSExtractor
from gps_filter import GPSFilter
from grid_divider import GridDivider
from logger import setup_logger
import os
import pandas as pd
import shutil
import matplotlib.pyplot as plt
from typing import List, Dict, Optional
from dataclasses import dataclass
from tqdm import tqdm
@dataclass
class PreprocessConfig:
"""预处理配置类"""
image_dir: str
output_dir: str
filter_grid_size: float = 0.001
filter_dense_distance_threshold: float = 10
filter_distance_threshold: float = 0.001
filter_min_neighbors: int = 6
grid_overlap: float = 0.05
enable_filter: bool = True
enable_grid_division: bool = True
enable_visualization: bool = True
class ImagePreprocessor:
def __init__(self, config: PreprocessConfig):
self.config = config
self.logger = setup_logger(config.output_dir)
self.gps_points = []
def extract_gps(self) -> List[Dict]:
"""提取GPS数据"""
self.logger.info("开始提取GPS数据")
extractor = GPSExtractor(self.config.image_dir)
self.gps_points = extractor.extract_all_gps()
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
return self.gps_points
def filter_points(self) -> List[Dict]:
"""过滤GPS点"""
if not self.config.enable_filter:
return self.gps_points
self.logger.info("开始过滤GPS点")
filter = GPSFilter(self.config.output_dir)
self.logger.info(f"开始过滤孤立点 (距离阈值: {self.config.filter_distance_threshold}, 最小邻居数: {
self.config.filter_min_neighbors})")
self.gps_points = filter.filter_isolated_points(
self.gps_points,
self.config.filter_distance_threshold,
self.config.filter_min_neighbors
)
self.logger.info(f"孤立点过滤后剩余 {len(self.gps_points)} 个GPS点")
self.logger.info(f"开始过滤密集点 (网格大小: {self.config.filter_grid_size}, 距离阈值: {
self.config.filter_dense_distance_threshold})")
self.gps_points = filter.filter_dense_points(
self.gps_points,
grid_size=self.config.filter_grid_size,
distance_threshold=self.config.filter_dense_distance_threshold
)
self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
return self.gps_points
def divide_grids(self) -> Dict[int, List[Dict]]:
"""划分网格"""
if not self.config.enable_grid_division:
return {0: self.gps_points} # 不划分网格时,所有点放在一个网格中
self.logger.info(f"开始划分网格 (重叠率: {self.config.grid_overlap})")
grid_divider = GridDivider(overlap=self.config.grid_overlap)
grids = grid_divider.divide_grids(self.gps_points)
grid_points = grid_divider.assign_to_grids(self.gps_points, grids)
self.logger.info(f"成功划分为 {len(grid_points)} 个网格")
return grid_points
def copy_images(self, grid_points: Dict[int, List[Dict]]):
"""复制图像到目标文件夹"""
self.logger.info("开始复制图像文件")
os.makedirs(self.config.output_dir, exist_ok=True)
for grid_idx, points in grid_points.items():
if self.config.enable_grid_division:
output_dir = os.path.join(self.config.output_dir, f'grid_{
grid_idx + 1}', 'images')
else:
output_dir = os.path.join(self.config.output_dir, 'images')
os.makedirs(output_dir, exist_ok=True)
for point in tqdm(points, desc=f"复制网格 {grid_idx + 1} 的图像"):
src = os.path.join(self.config.image_dir, point['file'])
dst = os.path.join(output_dir, point['file'])
shutil.copy(src, dst)
self.logger.info(f"网格 {grid_idx + 1} 包含 {len(points)} 张图像")
def visualize_results(self):
"""可视化处理结果"""
if not self.config.enable_visualization:
return
self.logger.info("开始生成可视化结果")
extractor = GPSExtractor(self.config.image_dir)
original_points = extractor.extract_all_gps()
with open(os.path.join(self.config.output_dir, 'del_imgs.txt'), "r", encoding="utf-8") as file:
filtered_file = [line.strip() for line in file]
# 绘制散点图
plt.figure(figsize=(10, 8))
plt.scatter([p['lon'] for p in original_points],
[p['lat'] for p in original_points],
color='blue', label="Original Points", alpha=0.6)
plt.scatter([p['lon'] for p in original_points if p['file'] in filtered_file],
[p['lat']
for p in original_points if p['file'] in filtered_file],
color="red", label="Filtered Points", alpha=0.6)
plt.title("GPS Coordinates of Images", fontsize=14)
plt.xlabel("Longitude", fontsize=12)
plt.ylabel("Latitude", fontsize=12)
plt.grid(True)
plt.legend()
plt.savefig(os.path.join(self.config.output_dir, 'filter_GPS.png'))
plt.close()
self.logger.info("预处理结果图已保存")
def process(self):
"""执行完整的预处理流程"""
try:
self.extract_gps()
self.filter_points()
grid_points = self.divide_grids()
self.copy_images(grid_points)
self.visualize_results()
self.logger.info("预处理任务完成")
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
raise
if __name__ == '__main__':
# 创建配置
config = PreprocessConfig(
image_dir=r'C:\datasets\1815\output\grid_5\images',
output_dir=r'C:\datasets\1815\output\grid_5',
filter_grid_size=0.001,
filter_dense_distance_threshold=10,
filter_distance_threshold=0.001,
filter_min_neighbors=6,
grid_overlap=0.05,
enable_filter=False,
enable_grid_division=True,
enable_visualization=False
)
# 创建处理器并执行
processor = ImagePreprocessor(config)
processor.process()