ODM_pro/odm_preprocess.py

245 lines
8.5 KiB
Python
Raw Normal View History

2024-12-17 22:09:47 +08:00
import os
import shutil
2024-12-21 12:03:54 +08:00
from datetime import timedelta
2024-12-17 22:09:47 +08:00
from dataclasses import dataclass
from typing import Dict
import matplotlib.pyplot as plt
import pandas as pd
2024-12-17 22:09:47 +08:00
from tqdm import tqdm
from preprocess.cluster import GPSCluster
from preprocess.command_runner import CommandRunner
from preprocess.gps_extractor import GPSExtractor
from preprocess.gps_filter import GPSFilter
from preprocess.grid_divider import GridDivider
from preprocess.logger import setup_logger
2024-12-17 22:09:47 +08:00
@dataclass
class PreprocessConfig:
"""预处理配置类"""
2024-12-17 22:09:47 +08:00
image_dir: str
output_dir: str
2024-12-21 12:03:54 +08:00
# 聚类过滤参数
cluster_eps: float = 0.01
cluster_min_samples: int = 5
# 孤立点过滤参数
filter_distance_threshold: float = 0.001 # 经纬度距离
2024-12-17 22:09:47 +08:00
filter_min_neighbors: int = 6
2024-12-21 12:03:54 +08:00
# 密集点过滤参数
filter_grid_size: float = 0.001
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
filter_time_threshold: timedelta = timedelta(minutes=5)
# 网格划分参数
2024-12-17 22:09:47 +08:00
grid_overlap: float = 0.05
2024-12-20 21:10:22 +08:00
grid_size: float = 500
2024-12-21 12:03:54 +08:00
# 几个pipline过程是否开启
2024-12-17 22:09:47 +08:00
enable_filter: bool = True
enable_grid_division: bool = True
enable_visualization: bool = True
enable_copy_images: bool = True
2024-12-21 12:03:54 +08:00
mode: str = "快拼模式"
2024-12-17 22:09:47 +08:00
class ImagePreprocessor:
def __init__(self, config: PreprocessConfig):
self.config = config
self.logger = setup_logger(config.output_dir)
self.gps_points = []
self.command_runner = CommandRunner(config.output_dir)
2024-12-17 22:09:47 +08:00
def extract_gps(self) -> pd.DataFrame:
2024-12-17 22:09:47 +08:00
"""提取GPS数据"""
self.logger.info("开始提取GPS数据")
extractor = GPSExtractor(self.config.image_dir)
self.gps_points = extractor.extract_all_gps()
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
return self.gps_points
2024-12-18 21:07:47 +08:00
def cluster(self) -> pd.DataFrame:
"""使用DBSCAN对GPS点进行聚类只保留最大的类"""
self.logger.info("开始聚类")
# 创建聚类器并执行聚类
2024-12-21 10:44:25 +08:00
clusterer = GPSCluster(
2024-12-21 12:03:54 +08:00
self.gps_points, output_dir=self.config.output_dir,
eps=self.config.cluster_eps, min_samples=self.config.cluster_min_samples)
# 获取主要类别的点
2024-12-21 12:03:54 +08:00
self.clustered_points = clusterer.fit()
self.gps_points = clusterer.get_main_cluster(self.clustered_points)
# 获取统计信息并记录
2024-12-21 12:03:54 +08:00
stats = clusterer.get_cluster_stats(self.clustered_points)
self.logger.info(
f"聚类完成:主要类别包含 {stats['main_cluster_points']} 个点,"
f"噪声点 {stats['noise_points']}"
)
def filter_points(self) -> pd.DataFrame:
2024-12-17 22:09:47 +08:00
"""过滤GPS点"""
if not self.config.enable_filter:
return self.gps_points
self.logger.info("开始过滤GPS点")
filter = GPSFilter(self.config.output_dir)
2024-12-18 21:07:47 +08:00
self.logger.info(
f"开始过滤孤立点(距离阈值: {self.config.filter_distance_threshold}, 最小邻居数: {self.config.filter_min_neighbors})"
)
2024-12-17 22:09:47 +08:00
self.gps_points = filter.filter_isolated_points(
self.gps_points,
self.config.filter_distance_threshold,
self.config.filter_min_neighbors,
2024-12-17 22:09:47 +08:00
)
self.logger.info(f"孤立点过滤后剩余 {len(self.gps_points)} 个GPS点")
2024-12-18 21:07:47 +08:00
self.logger.info(
f"开始过滤密集点(网格大小: {self.config.filter_grid_size}, 距离阈值: {self.config.filter_dense_distance_threshold})"
)
2024-12-17 22:09:47 +08:00
self.gps_points = filter.filter_dense_points(
self.gps_points,
grid_size=self.config.filter_grid_size,
distance_threshold=self.config.filter_dense_distance_threshold,
2024-12-21 12:03:54 +08:00
time_threshold=self.config.filter_time_threshold,
2024-12-17 22:09:47 +08:00
)
self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
return self.gps_points
def divide_grids(self) -> Dict[int, pd.DataFrame]:
2024-12-17 22:09:47 +08:00
"""划分网格"""
if not self.config.enable_grid_division:
return {0: self.gps_points} # 不划分网格时,所有点放在一个网格中
self.logger.info(f"开始划分网格 (重叠率: {self.config.grid_overlap})")
grid_divider = GridDivider(overlap=self.config.grid_overlap)
2024-12-18 21:07:47 +08:00
grids = grid_divider.divide_grids(
self.gps_points, grid_size=self.config.grid_size
)
2024-12-17 22:09:47 +08:00
grid_points = grid_divider.assign_to_grids(self.gps_points, grids)
self.logger.info(f"成功划分为 {len(grid_points)} 个网格")
return grid_points
def copy_images(self, grid_points: Dict[int, pd.DataFrame]):
2024-12-17 22:09:47 +08:00
"""复制图像到目标文件夹"""
if not self.config.enable_copy_images:
return
2024-12-17 22:09:47 +08:00
self.logger.info("开始复制图像文件")
for grid_idx, points in grid_points.items():
if self.config.enable_grid_division:
2024-12-18 21:07:47 +08:00
output_dir = os.path.join(
self.config.output_dir, f"grid_{grid_idx + 1}", "project", "images"
)
2024-12-17 22:09:47 +08:00
else:
2024-12-21 10:44:25 +08:00
output_dir = os.path.join(
self.config.output_dir, "project", "images")
2024-12-17 22:09:47 +08:00
os.makedirs(output_dir, exist_ok=True)
for point in tqdm(points, desc=f"复制网格 {grid_idx + 1} 的图像"):
src = os.path.join(self.config.image_dir, point["file"])
dst = os.path.join(output_dir, point["file"])
2024-12-17 22:09:47 +08:00
shutil.copy(src, dst)
self.logger.info(f"网格 {grid_idx + 1} 包含 {len(points)} 张图像")
def visualize_results(self):
"""可视化处理结果"""
if not self.config.enable_visualization:
return
self.logger.info("开始生成可视化结果")
extractor = GPSExtractor(self.config.image_dir)
original_points_df = extractor.extract_all_gps()
2024-12-17 22:09:47 +08:00
# 读取被过滤的图片列表
with open(
os.path.join(self.config.output_dir, "del_imgs.txt"), "r", encoding="utf-8"
) as file:
filtered_files = [line.strip() for line in file if line.strip()]
# 创建一个新的图形
plt.figure(figsize=(20, 16))
2024-12-18 21:07:47 +08:00
# 绘制所有原始点
plt.scatter(
original_points_df["lon"],
original_points_df["lat"],
color="blue",
label="Original Points",
alpha=0.6,
)
2024-12-18 21:07:47 +08:00
# 绘制被过滤的点
filtered_points_df = original_points_df[
original_points_df["file"].isin(filtered_files)
]
plt.scatter(
filtered_points_df["lon"],
filtered_points_df["lat"],
color="red",
label="Filtered Points",
alpha=0.6,
)
# 设置图形属性
2024-12-17 22:09:47 +08:00
plt.title("GPS Coordinates of Images", fontsize=14)
plt.xlabel("Longitude", fontsize=12)
plt.ylabel("Latitude", fontsize=12)
plt.grid(True)
plt.legend()
2024-12-18 21:07:47 +08:00
# 保存图形
plt.savefig(os.path.join(self.config.output_dir, "filter_GPS.png"))
2024-12-17 22:09:47 +08:00
plt.close()
self.logger.info("预处理结果图已保存")
def process(self):
"""执行完整的预处理流程"""
2024-12-18 21:07:47 +08:00
try:
2024-12-17 22:09:47 +08:00
self.extract_gps()
self.cluster()
2024-12-21 12:03:54 +08:00
self.filter_points()
2024-12-20 21:10:22 +08:00
grid_points = self.divide_grids()
self.copy_images(grid_points)
2024-12-20 20:57:01 +08:00
self.visualize_results()
2024-12-21 12:03:54 +08:00
self.logger.info("预处理任务完成")
2024-12-20 21:30:44 +08:00
self.command_runner.run_grid_commands(
grid_points,
2024-12-21 12:03:54 +08:00
self.config.enable_grid_division,
self.mode
2024-12-20 21:30:44 +08:00
)
2024-12-21 12:06:51 +08:00
# TODO 拼图
2024-12-17 22:09:47 +08:00
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
raise
if __name__ == "__main__":
2024-12-17 22:09:47 +08:00
# 创建配置
config = PreprocessConfig(
2024-12-21 12:03:54 +08:00
image_dir=r"E:\datasets\UAV\1815\images",
2024-12-20 20:57:01 +08:00
output_dir=r"test",
2024-12-21 12:03:54 +08:00
cluster_eps=0.01,
cluster_min_samples=5,
2024-12-17 22:09:47 +08:00
filter_distance_threshold=0.001,
filter_min_neighbors=6,
2024-12-21 12:03:54 +08:00
filter_grid_size=0.001,
filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5),
2024-12-17 22:09:47 +08:00
grid_overlap=0.05,
2024-12-20 21:10:22 +08:00
grid_size=500,
2024-12-21 12:03:54 +08:00
enable_filter=True,
2024-12-17 22:09:47 +08:00
enable_grid_division=True,
enable_visualization=True,
enable_copy_images=True,
2024-12-17 22:09:47 +08:00
)
# 创建处理器并执行
processor = ImagePreprocessor(config)
processor.process()