加入快拼模式,修改参数
This commit is contained in:
parent
ebe818125e
commit
0e91d125cb
@ -1,5 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
import shutil
|
import shutil
|
||||||
|
from datetime import timedelta
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Dict
|
from typing import Dict
|
||||||
|
|
||||||
@ -21,19 +22,25 @@ class PreprocessConfig:
|
|||||||
|
|
||||||
image_dir: str
|
image_dir: str
|
||||||
output_dir: str
|
output_dir: str
|
||||||
eps: float = 0.01
|
# 聚类过滤参数
|
||||||
min_samples: int = 5
|
cluster_eps: float = 0.01
|
||||||
filter_grid_size: float = 0.001
|
cluster_min_samples: int = 5
|
||||||
filter_dense_distance_threshold: float = 10
|
# 孤立点过滤参数
|
||||||
filter_distance_threshold: float = 0.001
|
filter_distance_threshold: float = 0.001 # 经纬度距离
|
||||||
filter_min_neighbors: int = 6
|
filter_min_neighbors: int = 6
|
||||||
|
# 密集点过滤参数
|
||||||
|
filter_grid_size: float = 0.001
|
||||||
|
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
|
||||||
|
filter_time_threshold: timedelta = timedelta(minutes=5)
|
||||||
|
# 网格划分参数
|
||||||
grid_overlap: float = 0.05
|
grid_overlap: float = 0.05
|
||||||
grid_size: float = 500
|
grid_size: float = 500
|
||||||
|
# 几个pipline过程是否开启
|
||||||
enable_filter: bool = True
|
enable_filter: bool = True
|
||||||
enable_grid_division: bool = True
|
enable_grid_division: bool = True
|
||||||
enable_visualization: bool = True
|
enable_visualization: bool = True
|
||||||
enable_copy_images: bool = True
|
enable_copy_images: bool = True
|
||||||
|
mode: str = "快拼模式"
|
||||||
|
|
||||||
class ImagePreprocessor:
|
class ImagePreprocessor:
|
||||||
def __init__(self, config: PreprocessConfig):
|
def __init__(self, config: PreprocessConfig):
|
||||||
@ -55,11 +62,13 @@ class ImagePreprocessor:
|
|||||||
self.logger.info("开始聚类")
|
self.logger.info("开始聚类")
|
||||||
# 创建聚类器并执行聚类
|
# 创建聚类器并执行聚类
|
||||||
clusterer = GPSCluster(
|
clusterer = GPSCluster(
|
||||||
self.gps_points, output_dir=self.config.output_dir)
|
self.gps_points, output_dir=self.config.output_dir,
|
||||||
|
eps=self.config.cluster_eps, min_samples=self.config.cluster_min_samples)
|
||||||
# 获取主要类别的点
|
# 获取主要类别的点
|
||||||
self.gps_points = clusterer.get_main_cluster()
|
self.clustered_points = clusterer.fit()
|
||||||
|
self.gps_points = clusterer.get_main_cluster(self.clustered_points)
|
||||||
# 获取统计信息并记录
|
# 获取统计信息并记录
|
||||||
stats = clusterer.get_cluster_stats()
|
stats = clusterer.get_cluster_stats(self.clustered_points)
|
||||||
self.logger.info(
|
self.logger.info(
|
||||||
f"聚类完成:主要类别包含 {stats['main_cluster_points']} 个点,"
|
f"聚类完成:主要类别包含 {stats['main_cluster_points']} 个点,"
|
||||||
f"噪声点 {stats['noise_points']} 个"
|
f"噪声点 {stats['noise_points']} 个"
|
||||||
@ -90,6 +99,7 @@ class ImagePreprocessor:
|
|||||||
self.gps_points,
|
self.gps_points,
|
||||||
grid_size=self.config.filter_grid_size,
|
grid_size=self.config.filter_grid_size,
|
||||||
distance_threshold=self.config.filter_dense_distance_threshold,
|
distance_threshold=self.config.filter_dense_distance_threshold,
|
||||||
|
time_threshold=self.config.filter_time_threshold,
|
||||||
)
|
)
|
||||||
self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
|
self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
|
||||||
return self.gps_points
|
return self.gps_points
|
||||||
@ -188,15 +198,15 @@ class ImagePreprocessor:
|
|||||||
try:
|
try:
|
||||||
self.extract_gps()
|
self.extract_gps()
|
||||||
self.cluster()
|
self.cluster()
|
||||||
# self.time_filter()
|
self.filter_points()
|
||||||
# self.filter_points()
|
|
||||||
grid_points = self.divide_grids()
|
grid_points = self.divide_grids()
|
||||||
self.copy_images(grid_points)
|
self.copy_images(grid_points)
|
||||||
self.visualize_results()
|
self.visualize_results()
|
||||||
# self.logger.info("预处理任务完成")
|
self.logger.info("预处理任务完成")
|
||||||
self.command_runner.run_grid_commands(
|
self.command_runner.run_grid_commands(
|
||||||
grid_points,
|
grid_points,
|
||||||
self.config.enable_grid_division
|
self.config.enable_grid_division,
|
||||||
|
self.mode
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
|
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
|
||||||
@ -206,14 +216,22 @@ class ImagePreprocessor:
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# 创建配置
|
# 创建配置
|
||||||
config = PreprocessConfig(
|
config = PreprocessConfig(
|
||||||
image_dir=r"E:\湖南省第二测绘院\11-06-项目移交文件(王辉给)\无人机二三维节点扩容生产影像\影像数据\199\code\images",
|
image_dir=r"E:\datasets\UAV\1815\images",
|
||||||
output_dir=r"test",
|
output_dir=r"test",
|
||||||
filter_grid_size=0.001,
|
|
||||||
filter_dense_distance_threshold=10,
|
cluster_eps=0.01,
|
||||||
|
cluster_min_samples=5,
|
||||||
|
|
||||||
filter_distance_threshold=0.001,
|
filter_distance_threshold=0.001,
|
||||||
filter_min_neighbors=6,
|
filter_min_neighbors=6,
|
||||||
|
|
||||||
|
filter_grid_size=0.001,
|
||||||
|
filter_dense_distance_threshold=10,
|
||||||
|
filter_time_threshold=timedelta(minutes=5),
|
||||||
|
|
||||||
grid_overlap=0.05,
|
grid_overlap=0.05,
|
||||||
grid_size=500,
|
grid_size=500,
|
||||||
|
|
||||||
enable_filter=True,
|
enable_filter=True,
|
||||||
enable_grid_division=True,
|
enable_grid_division=True,
|
||||||
enable_visualization=True,
|
enable_visualization=True,
|
||||||
|
@ -17,7 +17,6 @@ class GPSCluster:
|
|||||||
self.dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
self.dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||||
self.scaler = StandardScaler()
|
self.scaler = StandardScaler()
|
||||||
self.gps_points = gps_points
|
self.gps_points = gps_points
|
||||||
self.clustered_points = self.fit()
|
|
||||||
self.log_file = os.path.join(output_dir, 'del_imgs.txt')
|
self.log_file = os.path.join(output_dir, 'del_imgs.txt')
|
||||||
|
|
||||||
def fit(self):
|
def fit(self):
|
||||||
@ -57,7 +56,7 @@ class GPSCluster:
|
|||||||
|
|
||||||
return result_df
|
return result_df
|
||||||
|
|
||||||
def get_cluster_stats(self):
|
def get_cluster_stats(self, clustered_points):
|
||||||
"""
|
"""
|
||||||
获取聚类统计信息
|
获取聚类统计信息
|
||||||
|
|
||||||
@ -67,22 +66,22 @@ class GPSCluster:
|
|||||||
返回:
|
返回:
|
||||||
聚类统计信息的字典
|
聚类统计信息的字典
|
||||||
"""
|
"""
|
||||||
main_cluster_points = sum(self.clustered_points["cluster"] == 1)
|
main_cluster_points = sum(clustered_points["cluster"] == 1)
|
||||||
stats = {
|
stats = {
|
||||||
"total_points": len(self.clustered_points),
|
"total_points": len(clustered_points),
|
||||||
"main_cluster_points": main_cluster_points,
|
"main_cluster_points": main_cluster_points,
|
||||||
"noise_points": sum(self.clustered_points["cluster"] == -1),
|
"noise_points": sum(clustered_points["cluster"] == -1),
|
||||||
}
|
}
|
||||||
|
|
||||||
noise_cluster = self.get_noise_cluster()
|
noise_cluster = self.get_noise_cluster(clustered_points)
|
||||||
with open(self.log_file, 'a', encoding='utf-8') as f:
|
with open(self.log_file, 'a', encoding='utf-8') as f:
|
||||||
for i, (_, row) in enumerate(noise_cluster.iterrows()):
|
for i, (_, row) in enumerate(noise_cluster.iterrows()):
|
||||||
f.write(row['file']+'\n')
|
f.write(row['file']+'\n')
|
||||||
f.write('\n')
|
f.write('\n')
|
||||||
return stats
|
return stats
|
||||||
|
|
||||||
def get_main_cluster(self):
|
def get_main_cluster(self, clustered_points):
|
||||||
return self.clustered_points[self.clustered_points["cluster"] == 1]
|
return clustered_points[clustered_points["cluster"] == 1]
|
||||||
|
|
||||||
def get_noise_cluster(self):
|
def get_noise_cluster(self, clustered_points):
|
||||||
return self.clustered_points[self.clustered_points["cluster"] == -1]
|
return clustered_points[clustered_points["cluster"] == -1]
|
||||||
|
@ -35,11 +35,15 @@ i
|
|||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
grid_dir = os.path.join(self.output_dir, f'grid_{grid_idx + 1}')
|
grid_dir = os.path.join(self.output_dir, f'grid_{grid_idx + 1}')
|
||||||
command = f"docker run -ti --rm -v {grid_dir}:/datasets opendronemap/odm --project-path /datasets project --feature-quality lowest --force-gps --use-3dmesh"
|
if self.mode == "快拼模式":
|
||||||
|
command = f"docker run -ti --rm -v {grid_dir}:/datasets opendronemap/odm --project-path /datasets project --feature-quality lowest --force-gps --use-3dmesh --fast-orthophoto --skip-3dmodel"
|
||||||
|
else:
|
||||||
|
command = f"docker run -ti --rm -v {grid_dir}:/datasets opendronemap/odm --project-path /datasets project --feature-quality lowest --force-gps --use-3dmesh"
|
||||||
|
|
||||||
self.logger.info(f"开始执行命令: {command}")
|
self.logger.info(f"开始执行命令: {command}")
|
||||||
success, error_msg = self.monitor.run_odm_with_monitor(command, grid_dir, grid_idx)
|
success, error_msg = self.monitor.run_odm_with_monitor(
|
||||||
|
command, grid_dir, grid_idx)
|
||||||
|
|
||||||
if not success:
|
if not success:
|
||||||
raise Exception(error_msg)
|
raise Exception(error_msg)
|
||||||
|
|
||||||
|
@ -52,7 +52,7 @@ class GPSFilter:
|
|||||||
if grid not in grid_map:
|
if grid not in grid_map:
|
||||||
grid_map[grid] = []
|
grid_map[grid] = []
|
||||||
grid_map[grid].append((row['file'], row['lat'], row['lon']))
|
grid_map[grid].append((row['file'], row['lat'], row['lon']))
|
||||||
|
|
||||||
self.logger.info(f"图像点已分配到 {len(grid_map)} 个网格中")
|
self.logger.info(f"图像点已分配到 {len(grid_map)} 个网格中")
|
||||||
|
|
||||||
# 在每个网格中计算两两距离并排序
|
# 在每个网格中计算两两距离并排序
|
||||||
@ -68,11 +68,11 @@ class GPSFilter:
|
|||||||
|
|
||||||
return sorted_distances
|
return sorted_distances
|
||||||
|
|
||||||
def _group_by_time(self, points_df: pd.DataFrame, time_threshold: timedelta = timedelta(minutes=5)) -> list:
|
def _group_by_time(self, points_df: pd.DataFrame, time_threshold: timedelta) -> list:
|
||||||
"""根据拍摄时间分组图片
|
"""根据拍摄时间分组图片
|
||||||
|
|
||||||
如果相邻两张图片的拍摄时间差超过5分钟,则进行切分
|
如果相邻两张图片的拍摄时间差超过5分钟,则进行切分
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
points_df: 包含图片信息的DataFrame,必须包含'file'和'date'列
|
points_df: 包含图片信息的DataFrame,必须包含'file'和'date'列
|
||||||
time_threshold: 时间间隔阈值,默认5分钟
|
time_threshold: 时间间隔阈值,默认5分钟
|
||||||
@ -97,32 +97,34 @@ class GPSFilter:
|
|||||||
|
|
||||||
# 按时间排序
|
# 按时间排序
|
||||||
valid_date_points = valid_date_points.sort_values('date')
|
valid_date_points = valid_date_points.sort_values('date')
|
||||||
self.logger.info(f"有效时间范围: {valid_date_points['date'].min()} 到 {valid_date_points['date'].max()}")
|
self.logger.info(
|
||||||
|
f"有效时间范围: {valid_date_points['date'].min()} 到 {valid_date_points['date'].max()}")
|
||||||
|
|
||||||
# 计算时间差
|
# 计算时间差
|
||||||
time_diffs = valid_date_points['date'].diff()
|
time_diffs = valid_date_points['date'].diff()
|
||||||
|
|
||||||
# 找到时间差超过阈值的位置
|
# 找到时间差超过阈值的位置
|
||||||
time_groups = []
|
time_groups = []
|
||||||
current_group_start = 0
|
current_group_start = 0
|
||||||
|
|
||||||
for idx, time_diff in enumerate(time_diffs):
|
for idx, time_diff in enumerate(time_diffs):
|
||||||
if time_diff and time_diff > time_threshold:
|
if time_diff and time_diff > time_threshold:
|
||||||
# 添加当前组
|
# 添加当前组
|
||||||
current_group = valid_date_points.iloc[current_group_start:idx]
|
current_group = valid_date_points.iloc[current_group_start:idx]
|
||||||
time_groups.append(current_group)
|
time_groups.append(current_group)
|
||||||
|
|
||||||
# 记录断点信息
|
# 记录断点信息
|
||||||
break_time = valid_date_points.iloc[idx]['date']
|
break_time = valid_date_points.iloc[idx]['date']
|
||||||
group_start_time = current_group.iloc[0]['date']
|
group_start_time = current_group.iloc[0]['date']
|
||||||
group_end_time = current_group.iloc[-1]['date']
|
group_end_time = current_group.iloc[-1]['date']
|
||||||
|
|
||||||
self.logger.info(
|
self.logger.info(
|
||||||
f"时间组 {len(time_groups)}: {len(current_group)} 个点, "
|
f"时间组 {len(time_groups)}: {len(current_group)} 个点, "
|
||||||
f"时间范围 [{group_start_time} - {group_end_time}]"
|
f"时间范围 [{group_start_time} - {group_end_time}]"
|
||||||
)
|
)
|
||||||
self.logger.info(f"在时间 {break_time} 处发现断点,时间差为 {time_diff}")
|
self.logger.info(
|
||||||
|
f"在时间 {break_time} 处发现断点,时间差为 {time_diff}")
|
||||||
|
|
||||||
current_group_start = idx
|
current_group_start = idx
|
||||||
|
|
||||||
# 添加最后一组
|
# 添加最后一组
|
||||||
@ -142,11 +144,11 @@ class GPSFilter:
|
|||||||
self.logger.info(f"共分为 {len(time_groups)} 个时间组")
|
self.logger.info(f"共分为 {len(time_groups)} 个时间组")
|
||||||
return time_groups
|
return time_groups
|
||||||
|
|
||||||
def filter_dense_points(self, points_df, grid_size=0.001, distance_threshold=13, time_interval=60):
|
def filter_dense_points(self, points_df, grid_size=0.001, distance_threshold=13, time_threshold=timedelta(minutes=5)):
|
||||||
"""
|
"""
|
||||||
过滤密集点,先按时间分组,再在每个时间组内过滤。
|
过滤密集点,先按时间分组,再在每个时间组内过滤。
|
||||||
空时间戳的点不进行过滤。
|
空时间戳的点不进行过滤。
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
points_df: 点数据
|
points_df: 点数据
|
||||||
grid_size: 网格大小
|
grid_size: 网格大小
|
||||||
@ -154,27 +156,28 @@ class GPSFilter:
|
|||||||
time_interval: 时间间隔(秒)
|
time_interval: 时间间隔(秒)
|
||||||
"""
|
"""
|
||||||
self.logger.info(f"开始按时间分组过滤密集点 (网格大小: {grid_size}, "
|
self.logger.info(f"开始按时间分组过滤密集点 (网格大小: {grid_size}, "
|
||||||
f"距离阈值: {distance_threshold}米, 时间间隔: {time_interval}秒)")
|
f"距离阈值: {distance_threshold}米, 分组时间间隔: {time_threshold}秒)")
|
||||||
|
|
||||||
# 按时间分组
|
# 按时间分组
|
||||||
time_groups = self._group_by_time(points_df, time_interval)
|
time_groups = self._group_by_time(points_df, time_threshold)
|
||||||
|
|
||||||
# 存储所有要删除的图片
|
# 存储所有要删除的图片
|
||||||
all_to_del_imgs = []
|
all_to_del_imgs = []
|
||||||
|
|
||||||
# 对每个时间组进行密集点过滤
|
# 对每个时间组进行密集点过滤
|
||||||
for group_idx, group_points in enumerate(time_groups):
|
for group_idx, group_points in enumerate(time_groups):
|
||||||
# 检查是否为空时间戳组(最后一组)
|
# 检查是否为空时间戳组(最后一组)
|
||||||
if group_idx == len(time_groups) - 1 and group_points['date'].isna().any():
|
if group_idx == len(time_groups) - 1 and group_points['date'].isna().any():
|
||||||
self.logger.info(f"跳过无时间戳组 (包含 {len(group_points)} 个点)")
|
self.logger.info(f"跳过无时间戳组 (包含 {len(group_points)} 个点)")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
self.logger.info(f"处理时间组 {group_idx + 1} (包含 {len(group_points)} 个点)")
|
self.logger.info(
|
||||||
|
f"处理时间组 {group_idx + 1} (包含 {len(group_points)} 个点)")
|
||||||
|
|
||||||
# 计算该组内的点间距离
|
# 计算该组内的点间距离
|
||||||
sorted_distances = self._get_distances(group_points, grid_size)
|
sorted_distances = self._get_distances(group_points, grid_size)
|
||||||
group_to_del_imgs = []
|
group_to_del_imgs = []
|
||||||
|
|
||||||
# 在每个网格中过滤密集点
|
# 在每个网格中过滤密集点
|
||||||
for grid, distances in sorted_distances.items():
|
for grid, distances in sorted_distances.items():
|
||||||
grid_del_count = 0
|
grid_del_count = 0
|
||||||
@ -182,7 +185,7 @@ class GPSFilter:
|
|||||||
candidate_img1, candidate_img2, dist = distances[0]
|
candidate_img1, candidate_img2, dist = distances[0]
|
||||||
if dist < distance_threshold:
|
if dist < distance_threshold:
|
||||||
distances.pop(0)
|
distances.pop(0)
|
||||||
|
|
||||||
# 获取候选图片的其他最短距离
|
# 获取候选图片的其他最短距离
|
||||||
candidate_img1_dist = None
|
candidate_img1_dist = None
|
||||||
candidate_img2_dist = None
|
candidate_img2_dist = None
|
||||||
@ -194,52 +197,60 @@ class GPSFilter:
|
|||||||
if candidate_img2 in distance:
|
if candidate_img2 in distance:
|
||||||
candidate_img2_dist = distance[2]
|
candidate_img2_dist = distance[2]
|
||||||
break
|
break
|
||||||
|
|
||||||
# 选择要删除的点
|
# 选择要删除的点
|
||||||
if candidate_img1_dist and candidate_img2_dist:
|
if candidate_img1_dist and candidate_img2_dist:
|
||||||
to_del_img = candidate_img1 if candidate_img1_dist < candidate_img2_dist else candidate_img2
|
to_del_img = candidate_img1 if candidate_img1_dist < candidate_img2_dist else candidate_img2
|
||||||
group_to_del_imgs.append(to_del_img)
|
group_to_del_imgs.append(to_del_img)
|
||||||
grid_del_count += 1
|
grid_del_count += 1
|
||||||
self.logger.debug(f"时间组 {group_idx + 1} 网格 {grid} 删除密集点: {to_del_img} (距离: {dist:.2f}米)")
|
self.logger.debug(
|
||||||
distances = [d for d in distances if to_del_img not in d]
|
f"时间组 {group_idx + 1} 网格 {grid} 删除密集点: {to_del_img} (距离: {dist:.2f}米)")
|
||||||
|
distances = [
|
||||||
|
d for d in distances if to_del_img not in d]
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
|
|
||||||
if grid_del_count > 0:
|
if grid_del_count > 0:
|
||||||
self.logger.info(f"时间组 {group_idx + 1} 网格 {grid} 删除了 {grid_del_count} 个密集点")
|
self.logger.info(
|
||||||
|
f"时间组 {group_idx + 1} 网格 {grid} 删除了 {grid_del_count} 个密集点")
|
||||||
|
|
||||||
all_to_del_imgs.extend(group_to_del_imgs)
|
all_to_del_imgs.extend(group_to_del_imgs)
|
||||||
self.logger.info(f"时间组 {group_idx + 1} 共删除 {len(group_to_del_imgs)} 个密集点")
|
self.logger.info(
|
||||||
|
f"时间组 {group_idx + 1} 共删除 {len(group_to_del_imgs)} 个密集点")
|
||||||
|
|
||||||
# 写入删除日志
|
# 写入删除日志
|
||||||
with open(self.log_file, 'a', encoding='utf-8') as f:
|
with open(self.log_file, 'a', encoding='utf-8') as f:
|
||||||
for img in all_to_del_imgs:
|
for img in all_to_del_imgs:
|
||||||
f.write(img + '\n')
|
f.write(img + '\n')
|
||||||
|
|
||||||
# 过滤数据
|
# 过滤数据
|
||||||
filtered_df = points_df[~points_df['file'].isin(all_to_del_imgs)]
|
filtered_df = points_df[~points_df['file'].isin(all_to_del_imgs)]
|
||||||
self.logger.info(f"密集点过滤完成,共删除 {len(all_to_del_imgs)} 个点,剩余 {len(filtered_df)} 个点")
|
self.logger.info(
|
||||||
|
f"密集点过滤完成,共删除 {len(all_to_del_imgs)} 个点,剩余 {len(filtered_df)} 个点")
|
||||||
|
|
||||||
return filtered_df
|
return filtered_df
|
||||||
|
|
||||||
def filter_isolated_points(self, points_df, threshold_distance=0.001, min_neighbors=6):
|
def filter_isolated_points(self, points_df, threshold_distance=0.001, min_neighbors=6):
|
||||||
"""过滤孤立点"""
|
"""过滤孤立点"""
|
||||||
self.logger.info(f"开始过滤孤立点 (距离阈值: {threshold_distance}, 最小邻居数: {min_neighbors})")
|
self.logger.info(
|
||||||
|
f"开始过滤孤立点 (距离阈值: {threshold_distance}, 最小邻居数: {min_neighbors})")
|
||||||
|
|
||||||
coords = points_df[['lat', 'lon']].values
|
coords = points_df[['lat', 'lon']].values
|
||||||
kdtree = KDTree(coords)
|
kdtree = KDTree(coords)
|
||||||
neighbors_count = [len(kdtree.query_ball_point(
|
neighbors_count = [len(kdtree.query_ball_point(
|
||||||
coord, threshold_distance)) for coord in coords]
|
coord, threshold_distance)) for coord in coords]
|
||||||
|
|
||||||
isolated_points = []
|
isolated_points = []
|
||||||
with open(self.log_file, 'a', encoding='utf-8') as f:
|
with open(self.log_file, 'a', encoding='utf-8') as f:
|
||||||
for i, (_, row) in enumerate(points_df.iterrows()):
|
for i, (_, row) in enumerate(points_df.iterrows()):
|
||||||
if neighbors_count[i] < min_neighbors:
|
if neighbors_count[i] < min_neighbors:
|
||||||
isolated_points.append(row['file'])
|
isolated_points.append(row['file'])
|
||||||
f.write(row['file']+'\n')
|
f.write(row['file']+'\n')
|
||||||
self.logger.debug(f"删除孤立点: {row['file']} (邻居数: {neighbors_count[i]})")
|
self.logger.debug(
|
||||||
|
f"删除孤立点: {row['file']} (邻居数: {neighbors_count[i]})")
|
||||||
f.write('\n')
|
f.write('\n')
|
||||||
|
|
||||||
filtered_df = points_df[~points_df['file'].isin(isolated_points)]
|
filtered_df = points_df[~points_df['file'].isin(isolated_points)]
|
||||||
self.logger.info(f"孤立点过滤完成,共删除 {len(isolated_points)} 个点,剩余 {len(filtered_df)} 个点")
|
self.logger.info(
|
||||||
|
f"孤立点过滤完成,共删除 {len(isolated_points)} 个点,剩余 {len(filtered_df)} 个点")
|
||||||
return filtered_df
|
return filtered_df
|
||||||
|
@ -8,7 +8,7 @@ from typing import Optional, Tuple
|
|||||||
class ODMProcessMonitor:
|
class ODMProcessMonitor:
|
||||||
"""ODM进程监控器"""
|
"""ODM进程监控器"""
|
||||||
|
|
||||||
def __init__(self, max_retries: int = 3, check_interval: int = 5):
|
def __init__(self, max_retries: int = 3, check_interval: int = 300):
|
||||||
"""
|
"""
|
||||||
初始化监控器
|
初始化监控器
|
||||||
|
|
||||||
@ -31,7 +31,10 @@ class ODMProcessMonitor:
|
|||||||
def _check_success(self, grid_dir: str) -> bool:
|
def _check_success(self, grid_dir: str) -> bool:
|
||||||
"""检查ODM是否执行成功"""
|
"""检查ODM是否执行成功"""
|
||||||
# ODM成功完成时会生成这些文件夹
|
# ODM成功完成时会生成这些文件夹
|
||||||
success_markers = ['odm_orthophoto', 'odm_georeferencing', 'odm_texturing']
|
if self.mode == "快拼模式":
|
||||||
|
success_markers = ['odm_orthophoto', 'odm_georeferencing']
|
||||||
|
else:
|
||||||
|
success_markers = ['odm_orthophoto', 'odm_georeferencing', 'odm_texturing']
|
||||||
return all(os.path.exists(os.path.join(grid_dir, marker)) for marker in success_markers)
|
return all(os.path.exists(os.path.join(grid_dir, marker)) for marker in success_markers)
|
||||||
|
|
||||||
def run_odm_with_monitor(self, command: str, grid_dir: str, grid_idx: int) -> Tuple[bool, str]:
|
def run_odm_with_monitor(self, command: str, grid_dir: str, grid_idx: int) -> Tuple[bool, str]:
|
||||||
|
Loading…
Reference in New Issue
Block a user