添加按照时间组的可视化
This commit is contained in:
parent
4adfd6db70
commit
989648fcae
3
logs/preprocess_20241222_185805.log
Normal file
3
logs/preprocess_20241222_185805.log
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
2024-12-22 18:58:05 - UAV_Preprocess.GPSExtractor - INFO - 开始从目录提取GPS坐标和拍摄日期: F:\error_data\20241104140457\code\images
|
||||||
|
2024-12-22 18:58:22 - UAV_Preprocess.GPSExtractor - INFO - GPS坐标和拍摄日期提取完成 - 总图片数: 2708, 成功提取: 2708, 失败: 0
|
||||||
|
2024-12-22 18:58:22 - UAV_Preprocess.GPSVisualizer - INFO - 已生成包含 14 个时间组的组合可视化图形
|
3
logs/preprocess_20241222_185926.log
Normal file
3
logs/preprocess_20241222_185926.log
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
2024-12-22 18:59:26 - UAV_Preprocess.GPSExtractor - INFO - 开始从目录提取GPS坐标和拍摄日期: F:\error_data\20241108134711\3D
|
||||||
|
2024-12-22 19:00:09 - UAV_Preprocess.GPSExtractor - INFO - GPS坐标和拍摄日期提取完成 - 总图片数: 6615, 成功提取: 6615, 失败: 0
|
||||||
|
2024-12-22 19:00:10 - UAV_Preprocess.GPSVisualizer - INFO - 已生成包含 8 个时间组的组合可视化图形
|
@ -218,8 +218,8 @@ class ImagePreprocessor:
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# 创建配置
|
# 创建配置
|
||||||
config = PreprocessConfig(
|
config = PreprocessConfig(
|
||||||
image_dir=r"E:\datasets\UAV\502\project\images",
|
image_dir=r"F:\error_data\20240930091614\project\images",
|
||||||
output_dir=r"E:\studio2\ODM_pro\test",
|
output_dir=r"F:\error_data\20240930091614\output",
|
||||||
|
|
||||||
cluster_eps=0.01,
|
cluster_eps=0.01,
|
||||||
cluster_min_samples=5,
|
cluster_min_samples=5,
|
||||||
|
@ -5,7 +5,7 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from preprocess.gps_extractor import GPSExtractor
|
from preprocess.gps_extractor import GPSExtractor
|
||||||
|
|
||||||
DATASET = r'E:\datasets\UAV\502\project\images'
|
DATASET = r'F:\error_data\20240930091614\project\images'
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
extractor = GPSExtractor(DATASET)
|
extractor = GPSExtractor(DATASET)
|
||||||
|
138
tools/show_GPS_by_time.py
Normal file
138
tools/show_GPS_by_time.py
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
import os
|
||||||
|
import sys
|
||||||
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from datetime import timedelta
|
||||||
|
import logging
|
||||||
|
import numpy as np
|
||||||
|
from preprocess.gps_extractor import GPSExtractor
|
||||||
|
from preprocess.logger import setup_logger
|
||||||
|
|
||||||
|
class GPSTimeVisualizer:
|
||||||
|
"""按时间组可视化GPS点"""
|
||||||
|
|
||||||
|
def __init__(self, image_dir: str, output_dir: str):
|
||||||
|
self.image_dir = image_dir
|
||||||
|
self.output_dir = output_dir
|
||||||
|
self.logger = logging.getLogger('UAV_Preprocess.GPSVisualizer')
|
||||||
|
|
||||||
|
def _group_by_time(self, points_df, time_threshold=timedelta(minutes=5)):
|
||||||
|
"""按时间间隔对点进行分组"""
|
||||||
|
if 'date' not in points_df.columns:
|
||||||
|
self.logger.error("数据中缺少date列")
|
||||||
|
return [points_df]
|
||||||
|
|
||||||
|
# 将date为空的行单独作为一组
|
||||||
|
null_date_group = points_df[points_df['date'].isna()]
|
||||||
|
valid_date_points = points_df[points_df['date'].notna()]
|
||||||
|
|
||||||
|
if not null_date_group.empty:
|
||||||
|
self.logger.info(f"发现 {len(null_date_group)} 个无时间戳的点,将作为单独分组")
|
||||||
|
|
||||||
|
if valid_date_points.empty:
|
||||||
|
self.logger.warning("没有有效的时间戳数据")
|
||||||
|
return [null_date_group] if not null_date_group.empty else []
|
||||||
|
|
||||||
|
# 按时间排序
|
||||||
|
valid_date_points = valid_date_points.sort_values('date')
|
||||||
|
|
||||||
|
# 计算时间差
|
||||||
|
time_diffs = valid_date_points['date'].diff()
|
||||||
|
|
||||||
|
# 找到时间差超过阈值的位置
|
||||||
|
time_groups = []
|
||||||
|
current_group_start = 0
|
||||||
|
|
||||||
|
for idx, time_diff in enumerate(time_diffs):
|
||||||
|
if time_diff and time_diff > time_threshold:
|
||||||
|
# 添加当前组
|
||||||
|
current_group = valid_date_points.iloc[current_group_start:idx]
|
||||||
|
time_groups.append(current_group)
|
||||||
|
current_group_start = idx
|
||||||
|
|
||||||
|
# 添加最后一组
|
||||||
|
last_group = valid_date_points.iloc[current_group_start:]
|
||||||
|
if not last_group.empty:
|
||||||
|
time_groups.append(last_group)
|
||||||
|
|
||||||
|
# 如果有空时间戳的点,将其作为最后一组
|
||||||
|
if not null_date_group.empty:
|
||||||
|
time_groups.append(null_date_group)
|
||||||
|
|
||||||
|
return time_groups
|
||||||
|
|
||||||
|
def visualize_time_groups(self, time_threshold=timedelta(minutes=5)):
|
||||||
|
"""在同一张图上显示所有时间组,用不同颜色区分"""
|
||||||
|
# 提取GPS数据
|
||||||
|
extractor = GPSExtractor(self.image_dir)
|
||||||
|
gps_points = extractor.extract_all_gps()
|
||||||
|
|
||||||
|
# 按时间分组
|
||||||
|
time_groups = self._group_by_time(gps_points, time_threshold)
|
||||||
|
|
||||||
|
# 创建图形
|
||||||
|
plt.figure(figsize=(15, 10))
|
||||||
|
|
||||||
|
# 生成不同的颜色
|
||||||
|
colors = plt.cm.rainbow(np.linspace(0, 1, len(time_groups)))
|
||||||
|
|
||||||
|
# 为每个时间组绘制点和轨迹
|
||||||
|
for idx, (group, color) in enumerate(zip(time_groups, colors)):
|
||||||
|
if not group['date'].isna().any():
|
||||||
|
# 有时间戳的组
|
||||||
|
sorted_group = group.sort_values('date')
|
||||||
|
|
||||||
|
# 绘制轨迹线
|
||||||
|
plt.plot(sorted_group['lon'], sorted_group['lat'],
|
||||||
|
color=color, linestyle='-', linewidth=1.5, alpha=0.6,
|
||||||
|
label=f'Flight Path {idx + 1}')
|
||||||
|
|
||||||
|
# 绘制GPS点
|
||||||
|
plt.scatter(sorted_group['lon'], sorted_group['lat'],
|
||||||
|
color=color, marker='o', s=30, alpha=0.6)
|
||||||
|
|
||||||
|
# 标记起点和终点
|
||||||
|
plt.scatter(sorted_group['lon'].iloc[0], sorted_group['lat'].iloc[0],
|
||||||
|
color=color, marker='^', s=100,
|
||||||
|
label=f'Start {idx + 1} ({sorted_group["date"].min().strftime("%H:%M:%S")})')
|
||||||
|
plt.scatter(sorted_group['lon'].iloc[-1], sorted_group['lat'].iloc[-1],
|
||||||
|
color=color, marker='s', s=100,
|
||||||
|
label=f'End {idx + 1} ({sorted_group["date"].max().strftime("%H:%M:%S")})')
|
||||||
|
else:
|
||||||
|
# 无时间戳的组
|
||||||
|
plt.scatter(group['lon'], group['lat'],
|
||||||
|
color=color, marker='x', s=50, alpha=0.6,
|
||||||
|
label='No Timestamp Points')
|
||||||
|
|
||||||
|
plt.title("GPS Points by Time Groups", fontsize=14)
|
||||||
|
plt.xlabel("Longitude", fontsize=12)
|
||||||
|
plt.ylabel("Latitude", fontsize=12)
|
||||||
|
plt.grid(True)
|
||||||
|
|
||||||
|
# 调整图例位置和大小
|
||||||
|
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=10)
|
||||||
|
|
||||||
|
# 调整布局以适应图例
|
||||||
|
plt.tight_layout()
|
||||||
|
|
||||||
|
# 保存图片
|
||||||
|
plt.savefig(os.path.join(self.output_dir, 'gps_time_groups_combined.png'),
|
||||||
|
dpi=300, bbox_inches='tight')
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
self.logger.info(f"已生成包含 {len(time_groups)} 个时间组的组合可视化图形")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# 设置数据集路径
|
||||||
|
DATASET = r'F:\error_data\20241108134711\3D'
|
||||||
|
output_dir = r'E:\studio2\ODM_pro\test'
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
|
||||||
|
# 设置日志
|
||||||
|
setup_logger(os.path.dirname(output_dir))
|
||||||
|
|
||||||
|
# 创建可视化器并生成图形
|
||||||
|
visualizer = GPSTimeVisualizer(DATASET, output_dir)
|
||||||
|
visualizer.visualize_time_groups(time_threshold=timedelta(minutes=5))
|
Loading…
Reference in New Issue
Block a user