200 lines
7.5 KiB
Python
200 lines
7.5 KiB
Python
from preprocess.gps_extractor import GPSExtractor
|
|
from preprocess.time_filter import TimeFilter
|
|
from preprocess.gps_filter import GPSFilter
|
|
from preprocess.grid_divider import GridDivider
|
|
from preprocess.logger import setup_logger
|
|
from preprocess.command_runner import CommandRunner
|
|
import os
|
|
import pandas as pd
|
|
import shutil
|
|
import matplotlib.pyplot as plt
|
|
from typing import List, Dict, Optional
|
|
from dataclasses import dataclass
|
|
from tqdm import tqdm
|
|
import subprocess
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
|
|
@dataclass
|
|
class PreprocessConfig:
|
|
"""预处理配置类"""
|
|
image_dir: str
|
|
output_dir: str
|
|
filter_grid_size: float = 0.001
|
|
filter_dense_distance_threshold: float = 10
|
|
filter_distance_threshold: float = 0.001
|
|
filter_min_neighbors: int = 6
|
|
grid_overlap: float = 0.05
|
|
grid_size: float = 250
|
|
enable_filter: bool = True
|
|
enable_grid_division: bool = True
|
|
enable_visualization: bool = True
|
|
enable_copy_images: bool = True
|
|
|
|
|
|
class ImagePreprocessor:
|
|
def __init__(self, config: PreprocessConfig):
|
|
self.config = config
|
|
self.logger = setup_logger(config.output_dir)
|
|
self.gps_points = []
|
|
self.command_runner = CommandRunner(config.output_dir)
|
|
|
|
def extract_gps(self) -> pd.DataFrame:
|
|
"""提取GPS数据"""
|
|
self.logger.info("开始提取GPS数据")
|
|
extractor = GPSExtractor(self.config.image_dir)
|
|
self.gps_points = extractor.extract_all_gps()
|
|
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
|
|
return self.gps_points
|
|
|
|
def time_filter(self) -> pd.DataFrame:
|
|
"""时间过滤"""
|
|
self.logger.info("开始时间过滤")
|
|
time_filter = TimeFilter(self.config.output_dir)
|
|
self.gps_points = time_filter.filter_by_date(self.gps_points)
|
|
self.logger.info(f"时间过滤后剩余 {len(self.gps_points)} 个GPS点")
|
|
return self.gps_points
|
|
|
|
# TODO 过滤密集点算法需要改进
|
|
def filter_points(self) -> pd.DataFrame:
|
|
"""过滤GPS点"""
|
|
if not self.config.enable_filter:
|
|
return self.gps_points
|
|
|
|
self.logger.info("开始过滤GPS点")
|
|
filter = GPSFilter(self.config.output_dir)
|
|
|
|
self.logger.info(f"开始过滤孤立点 (距离阈值: {self.config.filter_distance_threshold}, 最小邻居数: {
|
|
self.config.filter_min_neighbors})")
|
|
self.gps_points = filter.filter_isolated_points(
|
|
self.gps_points,
|
|
self.config.filter_distance_threshold,
|
|
self.config.filter_min_neighbors
|
|
)
|
|
self.logger.info(f"孤立点过滤后剩余 {len(self.gps_points)} 个GPS点")
|
|
|
|
self.logger.info(f"开始过滤密集点 (网格大小: {self.config.filter_grid_size}, 距离阈值: {
|
|
self.config.filter_dense_distance_threshold})")
|
|
self.gps_points = filter.filter_dense_points(
|
|
self.gps_points,
|
|
grid_size=self.config.filter_grid_size,
|
|
distance_threshold=self.config.filter_dense_distance_threshold
|
|
)
|
|
self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
|
|
return self.gps_points
|
|
|
|
def divide_grids(self) -> Dict[int, pd.DataFrame]:
|
|
"""划分网格"""
|
|
if not self.config.enable_grid_division:
|
|
return {0: self.gps_points} # 不划分网格时,所有点放在一个网格中
|
|
|
|
self.logger.info(f"开始划分网格 (重叠率: {self.config.grid_overlap})")
|
|
grid_divider = GridDivider(overlap=self.config.grid_overlap)
|
|
grids = grid_divider.divide_grids(self.gps_points, grid_size=self.config.grid_size)
|
|
grid_points = grid_divider.assign_to_grids(self.gps_points, grids)
|
|
self.logger.info(f"成功划分为 {len(grid_points)} 个网格")
|
|
return grid_points
|
|
|
|
def copy_images(self, grid_points: Dict[int, pd.DataFrame]):
|
|
"""复制图像到目标文件夹"""
|
|
if not self.config.enable_copy_images:
|
|
return
|
|
|
|
self.logger.info("开始复制图像文件")
|
|
|
|
for grid_idx, points in grid_points.items():
|
|
if self.config.enable_grid_division:
|
|
output_dir = os.path.join(self.config.output_dir, f'grid_{grid_idx + 1}', 'project', 'images')
|
|
else:
|
|
output_dir = os.path.join(self.config.output_dir, 'project', 'images')
|
|
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
for point in tqdm(points, desc=f"复制网格 {grid_idx + 1} 的图像"):
|
|
src = os.path.join(self.config.image_dir, point['file'])
|
|
dst = os.path.join(output_dir, point['file'])
|
|
shutil.copy(src, dst)
|
|
self.logger.info(f"网格 {grid_idx + 1} 包含 {len(points)} 张图像")
|
|
|
|
def visualize_results(self):
|
|
"""可视化处理结果"""
|
|
if not self.config.enable_visualization:
|
|
return
|
|
|
|
self.logger.info("开始生成可视化结果")
|
|
extractor = GPSExtractor(self.config.image_dir)
|
|
original_points_df = extractor.extract_all_gps()
|
|
|
|
# 读取被过滤的图片列表
|
|
with open(os.path.join(self.config.output_dir, 'del_imgs.txt'), "r", encoding="utf-8") as file:
|
|
filtered_files = [line.strip() for line in file if line.strip()]
|
|
|
|
# 创建一个新的图形
|
|
plt.figure(figsize=(20, 16))
|
|
|
|
# 绘制所有原始点
|
|
plt.scatter(original_points_df['lon'],
|
|
original_points_df['lat'],
|
|
color='blue',
|
|
label="Original Points",
|
|
alpha=0.6)
|
|
|
|
# 绘制被过滤的点
|
|
filtered_points_df = original_points_df[original_points_df['file'].isin(filtered_files)]
|
|
plt.scatter(filtered_points_df['lon'],
|
|
filtered_points_df['lat'],
|
|
color="red",
|
|
label="Filtered Points",
|
|
alpha=0.6)
|
|
|
|
# 设置图形属性
|
|
plt.title("GPS Coordinates of Images", fontsize=14)
|
|
plt.xlabel("Longitude", fontsize=12)
|
|
plt.ylabel("Latitude", fontsize=12)
|
|
plt.grid(True)
|
|
plt.legend()
|
|
|
|
# 保存图形
|
|
plt.savefig(os.path.join(self.config.output_dir, 'filter_GPS.png'))
|
|
plt.close()
|
|
self.logger.info("预处理结果图已保存")
|
|
|
|
def process(self):
|
|
"""执行完整的预处理流程"""
|
|
try:
|
|
self.extract_gps()
|
|
self.time_filter()
|
|
self.filter_points()
|
|
grid_points = self.divide_grids()
|
|
self.copy_images(grid_points)
|
|
self.visualize_results()
|
|
self.logger.info("预处理任务完成")
|
|
self.command_runner.run_grid_commands(
|
|
grid_points,
|
|
self.config.enable_grid_division
|
|
)
|
|
except Exception as e:
|
|
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
|
|
raise
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# 创建配置
|
|
config = PreprocessConfig(
|
|
image_dir=r'C:\datasets\1815\images',
|
|
output_dir=r'C:\datasets\1815\output',
|
|
filter_grid_size=0.001,
|
|
filter_dense_distance_threshold=10,
|
|
filter_distance_threshold=0.001,
|
|
filter_min_neighbors=6,
|
|
grid_overlap=0.05,
|
|
enable_filter=True,
|
|
enable_grid_division=True,
|
|
enable_visualization=True,
|
|
enable_copy_images=True
|
|
)
|
|
|
|
# 创建处理器并执行
|
|
processor = ImagePreprocessor(config)
|
|
processor.process()
|