2024-12-23 11:31:20 +08:00
|
|
|
|
import logging
|
|
|
|
|
from geopy.distance import geodesic
|
2024-12-23 14:21:42 +08:00
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import os
|
|
|
|
|
|
2024-12-23 11:31:20 +08:00
|
|
|
|
|
|
|
|
|
class GridDivider:
|
|
|
|
|
"""划分九宫格,并将图片分配到对应网格"""
|
|
|
|
|
|
2024-12-23 14:21:42 +08:00
|
|
|
|
def __init__(self, overlap=0.1, output_dir=None):
|
2024-12-23 11:31:20 +08:00
|
|
|
|
self.overlap = overlap
|
2024-12-23 14:21:42 +08:00
|
|
|
|
self.output_dir = output_dir
|
2024-12-23 11:31:20 +08:00
|
|
|
|
self.logger = logging.getLogger('UAV_Preprocess.GridDivider')
|
|
|
|
|
self.logger.info(f"初始化网格划分器,重叠率: {overlap}")
|
2024-12-31 20:37:35 +08:00
|
|
|
|
self.num_grids_width = 0 # 添加网格数量属性
|
|
|
|
|
self.num_grids_height = 0
|
2024-12-23 11:31:20 +08:00
|
|
|
|
|
|
|
|
|
def divide_grids(self, points_df, grid_size=500):
|
2024-12-31 22:29:24 +08:00
|
|
|
|
"""计算边界框并划分网格
|
|
|
|
|
Returns:
|
|
|
|
|
tuple: (grids, translations)
|
|
|
|
|
- grids: 网格边界列表
|
|
|
|
|
- translations: 网格平移量字典
|
|
|
|
|
"""
|
2024-12-31 20:37:35 +08:00
|
|
|
|
self.logger.info("开始划分网格")
|
2024-12-23 14:21:42 +08:00
|
|
|
|
|
2024-12-23 11:31:20 +08:00
|
|
|
|
min_lat, max_lat = points_df['lat'].min(), points_df['lat'].max()
|
|
|
|
|
min_lon, max_lon = points_df['lon'].min(), points_df['lon'].max()
|
2024-12-23 14:21:42 +08:00
|
|
|
|
|
2024-12-23 11:31:20 +08:00
|
|
|
|
# 计算区域的实际距离(米)
|
|
|
|
|
width = geodesic((min_lat, min_lon), (min_lat, max_lon)).meters
|
|
|
|
|
height = geodesic((min_lat, min_lon), (max_lat, min_lon)).meters
|
2024-12-23 14:21:42 +08:00
|
|
|
|
|
2024-12-31 20:37:35 +08:00
|
|
|
|
self.logger.info(f"区域宽度: {width:.2f}米, 高度: {height:.2f}米")
|
2024-12-23 11:31:20 +08:00
|
|
|
|
|
|
|
|
|
# 计算需要划分的网格数量
|
2024-12-31 20:37:35 +08:00
|
|
|
|
self.num_grids_width = max(int(width / grid_size), 1)
|
|
|
|
|
self.num_grids_height = max(int(height / grid_size), 1)
|
2024-12-23 14:21:42 +08:00
|
|
|
|
|
2024-12-23 11:31:20 +08:00
|
|
|
|
# 计算每个网格对应的经纬度步长
|
2024-12-31 20:37:35 +08:00
|
|
|
|
lat_step = (max_lat - min_lat) / self.num_grids_height
|
|
|
|
|
lon_step = (max_lon - min_lon) / self.num_grids_width
|
2024-12-23 11:31:20 +08:00
|
|
|
|
|
|
|
|
|
grids = []
|
2024-12-31 22:29:24 +08:00
|
|
|
|
grid_translations = {} # 存储每个网格相对于第一个网格的平移量
|
2024-12-31 20:37:35 +08:00
|
|
|
|
|
2024-12-31 22:29:24 +08:00
|
|
|
|
# 先创建所有网格
|
2024-12-31 20:37:35 +08:00
|
|
|
|
for i in range(self.num_grids_height):
|
|
|
|
|
for j in range(self.num_grids_width):
|
2024-12-23 11:31:20 +08:00
|
|
|
|
grid_min_lat = min_lat + i * lat_step - self.overlap * lat_step
|
2024-12-31 20:37:35 +08:00
|
|
|
|
grid_max_lat = min_lat + (i + 1) * lat_step + self.overlap * lat_step
|
2024-12-23 11:31:20 +08:00
|
|
|
|
grid_min_lon = min_lon + j * lon_step - self.overlap * lon_step
|
2024-12-31 20:37:35 +08:00
|
|
|
|
grid_max_lon = min_lon + (j + 1) * lon_step + self.overlap * lon_step
|
|
|
|
|
|
2025-01-02 17:21:23 +08:00
|
|
|
|
grid_id = (i, j) # 使用(i,j)作为网格标识,i代表行,j代表列
|
2024-12-31 22:29:24 +08:00
|
|
|
|
grid_bounds = (grid_min_lat, grid_max_lat, grid_min_lon, grid_max_lon)
|
|
|
|
|
grids.append(grid_bounds)
|
2024-12-31 20:37:35 +08:00
|
|
|
|
|
2024-12-23 11:31:20 +08:00
|
|
|
|
self.logger.debug(
|
2025-01-02 17:21:23 +08:00
|
|
|
|
f"网格[{i},{j}]: 纬度[{grid_min_lat:.6f}, {grid_max_lat:.6f}], "
|
2024-12-23 11:31:20 +08:00
|
|
|
|
f"经度[{grid_min_lon:.6f}, {grid_max_lon:.6f}]"
|
|
|
|
|
)
|
2024-12-31 22:29:24 +08:00
|
|
|
|
|
|
|
|
|
# 计算每个网格相对于第一个网格的平移量
|
|
|
|
|
reference_grid = grids[0]
|
|
|
|
|
for i in range(self.num_grids_height):
|
|
|
|
|
for j in range(self.num_grids_width):
|
2025-01-02 17:21:23 +08:00
|
|
|
|
grid_id = (i, j)
|
2024-12-31 22:29:24 +08:00
|
|
|
|
grid_idx = i * self.num_grids_width + j
|
|
|
|
|
if grid_idx == 0: # 参考网格
|
|
|
|
|
grid_translations[grid_id] = (0, 0)
|
|
|
|
|
else:
|
|
|
|
|
translation = self.calculate_grid_translation(reference_grid, grids[grid_idx])
|
|
|
|
|
grid_translations[grid_id] = translation
|
|
|
|
|
self.logger.debug(
|
2025-01-02 17:21:23 +08:00
|
|
|
|
f"网格[{i},{j}]相对于参考网格的平移量: x={translation[0]:.2f}m, y={translation[1]:.2f}m"
|
2024-12-31 22:29:24 +08:00
|
|
|
|
)
|
|
|
|
|
|
2024-12-23 14:21:42 +08:00
|
|
|
|
self.logger.info(
|
2024-12-31 20:37:35 +08:00
|
|
|
|
f"成功划分为 {len(grids)} 个网格 ({self.num_grids_width}x{self.num_grids_height})")
|
|
|
|
|
|
2024-12-23 14:21:42 +08:00
|
|
|
|
# 添加可视化调用
|
|
|
|
|
self.visualize_grids(points_df, grids)
|
|
|
|
|
|
2024-12-31 22:29:24 +08:00
|
|
|
|
return grids, grid_translations
|
2024-12-23 11:31:20 +08:00
|
|
|
|
|
2024-12-31 20:37:35 +08:00
|
|
|
|
|
2024-12-23 11:31:20 +08:00
|
|
|
|
def assign_to_grids(self, points_df, grids):
|
|
|
|
|
"""将点分配到对应网格"""
|
|
|
|
|
self.logger.info(f"开始将 {len(points_df)} 个点分配到网格中")
|
2024-12-23 14:21:42 +08:00
|
|
|
|
|
2024-12-31 21:37:44 +08:00
|
|
|
|
grid_points = {} # 使用字典存储每个网格的点
|
2024-12-23 11:31:20 +08:00
|
|
|
|
points_assigned = 0
|
|
|
|
|
multiple_grid_points = 0
|
2024-12-23 14:21:42 +08:00
|
|
|
|
|
2024-12-31 21:37:44 +08:00
|
|
|
|
for i in range(self.num_grids_height):
|
|
|
|
|
for j in range(self.num_grids_width):
|
2025-01-02 17:21:23 +08:00
|
|
|
|
grid_points[(i, j)] = [] # 使用(i,j)元组
|
2024-12-31 21:37:44 +08:00
|
|
|
|
|
2024-12-23 11:31:20 +08:00
|
|
|
|
for _, point in points_df.iterrows():
|
|
|
|
|
point_assigned = False
|
2024-12-31 21:37:44 +08:00
|
|
|
|
for i in range(self.num_grids_height):
|
|
|
|
|
for j in range(self.num_grids_width):
|
|
|
|
|
grid_idx = i * self.num_grids_width + j
|
|
|
|
|
min_lat, max_lat, min_lon, max_lon = grids[grid_idx]
|
|
|
|
|
|
|
|
|
|
if min_lat <= point['lat'] <= max_lat and min_lon <= point['lon'] <= max_lon:
|
2025-01-02 17:21:23 +08:00
|
|
|
|
grid_points[(i, j)].append(point.to_dict())
|
2024-12-31 21:37:44 +08:00
|
|
|
|
if point_assigned:
|
|
|
|
|
multiple_grid_points += 1
|
|
|
|
|
else:
|
|
|
|
|
points_assigned += 1
|
|
|
|
|
point_assigned = True
|
2024-12-23 11:31:20 +08:00
|
|
|
|
|
|
|
|
|
# 记录每个网格的点数
|
2024-12-31 21:37:44 +08:00
|
|
|
|
for grid_id, points in grid_points.items():
|
|
|
|
|
self.logger.info(f"网格 {grid_id} 包含 {len(points)} 个点")
|
2024-12-23 11:31:20 +08:00
|
|
|
|
|
|
|
|
|
self.logger.info(
|
|
|
|
|
f"点分配完成: 总点数 {len(points_df)}, "
|
|
|
|
|
f"成功分配 {points_assigned} 个点, "
|
|
|
|
|
f"{multiple_grid_points} 个点被分配到多个网格"
|
|
|
|
|
)
|
2024-12-23 14:21:42 +08:00
|
|
|
|
|
2024-12-23 11:31:20 +08:00
|
|
|
|
return grid_points
|
2024-12-23 14:21:42 +08:00
|
|
|
|
|
|
|
|
|
def visualize_grids(self, points_df, grids):
|
|
|
|
|
"""可视化网格划分和GPS点的分布"""
|
|
|
|
|
self.logger.info("开始可视化网格划分")
|
|
|
|
|
|
|
|
|
|
plt.figure(figsize=(12, 8))
|
|
|
|
|
|
|
|
|
|
# 绘制GPS点
|
|
|
|
|
plt.scatter(points_df['lon'], points_df['lat'],
|
|
|
|
|
c='blue', s=10, alpha=0.6, label='GPS点')
|
|
|
|
|
|
|
|
|
|
# 绘制网格
|
2024-12-31 21:37:44 +08:00
|
|
|
|
for i in range(self.num_grids_height):
|
|
|
|
|
for j in range(self.num_grids_width):
|
|
|
|
|
grid_idx = i * self.num_grids_width + j
|
|
|
|
|
min_lat, max_lat, min_lon, max_lon = grids[grid_idx]
|
|
|
|
|
|
|
|
|
|
plt.plot([min_lon, max_lon, max_lon, min_lon, min_lon],
|
|
|
|
|
[min_lat, min_lat, max_lat, max_lat, min_lat],
|
|
|
|
|
'r-', alpha=0.5)
|
|
|
|
|
# 在网格中心添加网格编号
|
|
|
|
|
center_lon = (min_lon + max_lon) / 2
|
|
|
|
|
center_lat = (min_lat + max_lat) / 2
|
2025-01-02 17:21:23 +08:00
|
|
|
|
plt.text(center_lon, center_lat, f"({i},{j})", # 显示(i,j)
|
2024-12-31 21:37:44 +08:00
|
|
|
|
horizontalalignment='center', verticalalignment='center')
|
2024-12-23 14:21:42 +08:00
|
|
|
|
|
|
|
|
|
plt.title('网格划分与GPS点分布图')
|
|
|
|
|
plt.xlabel('经度')
|
|
|
|
|
plt.ylabel('纬度')
|
|
|
|
|
plt.legend()
|
|
|
|
|
plt.grid(True)
|
|
|
|
|
|
|
|
|
|
# 如果提供了输出目录,保存图像
|
|
|
|
|
if self.output_dir:
|
|
|
|
|
save_path = os.path.join(
|
|
|
|
|
self.output_dir, 'filter_imgs', 'grid_division.png')
|
|
|
|
|
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
|
|
|
|
self.logger.info(f"网格划分可视化图已保存至: {save_path}")
|
|
|
|
|
|
|
|
|
|
plt.close()
|
2024-12-31 22:29:24 +08:00
|
|
|
|
|
|
|
|
|
def get_grid_center(self, grid_bounds) -> tuple:
|
|
|
|
|
"""计算网格中心点的经纬度
|
|
|
|
|
Args:
|
|
|
|
|
grid_bounds: (min_lat, max_lat, min_lon, max_lon)
|
|
|
|
|
Returns:
|
|
|
|
|
(center_lat, center_lon)
|
|
|
|
|
"""
|
|
|
|
|
min_lat, max_lat, min_lon, max_lon = grid_bounds
|
|
|
|
|
return ((min_lat + max_lat) / 2, (min_lon + max_lon) / 2)
|
|
|
|
|
|
|
|
|
|
def calculate_grid_translation(self, reference_grid: tuple, target_grid: tuple) -> tuple:
|
|
|
|
|
"""计算目标网格相对于参考网格的平移距离(米)
|
|
|
|
|
Args:
|
|
|
|
|
reference_grid: 参考网格的边界 (min_lat, max_lat, min_lon, max_lon)
|
|
|
|
|
target_grid: 目标网格的边界 (min_lat, max_lat, min_lon, max_lon)
|
|
|
|
|
Returns:
|
|
|
|
|
(x_translation, y_translation): 在米制单位下的平移量
|
|
|
|
|
"""
|
|
|
|
|
ref_center = self.get_grid_center(reference_grid)
|
|
|
|
|
target_center = self.get_grid_center(target_grid)
|
|
|
|
|
|
|
|
|
|
# 计算经度方向的距离(x轴)
|
|
|
|
|
x_distance = geodesic(
|
|
|
|
|
(ref_center[0], ref_center[1]),
|
|
|
|
|
(ref_center[0], target_center[1])
|
|
|
|
|
).meters
|
|
|
|
|
# 如果目标在参考点西边,距离为负
|
|
|
|
|
if target_center[1] < ref_center[1]:
|
|
|
|
|
x_distance = -x_distance
|
|
|
|
|
|
|
|
|
|
# 计算纬度方向的距离(y轴)
|
|
|
|
|
y_distance = geodesic(
|
|
|
|
|
(ref_center[0], ref_center[1]),
|
|
|
|
|
(target_center[0], ref_center[1])
|
|
|
|
|
).meters
|
|
|
|
|
# 如果目标在参考点南边,距离为负
|
|
|
|
|
if target_center[0] < ref_center[0]:
|
|
|
|
|
y_distance = -y_distance
|
|
|
|
|
|
|
|
|
|
return (x_distance, y_distance)
|