UAV/odm_preprocess.py

367 lines
14 KiB
Python
Raw Normal View History

2024-12-23 11:31:20 +08:00
import os
import shutil
from datetime import timedelta
from dataclasses import dataclass
2024-12-31 22:29:24 +08:00
from typing import Dict, Tuple
2025-01-06 17:18:03 +08:00
import psutil
2024-12-23 11:31:20 +08:00
import matplotlib.pyplot as plt
import pandas as pd
from tqdm import tqdm
from filter.cluster_filter import GPSCluster
from filter.time_group_overlap_filter import TimeGroupOverlapFilter
from filter.gps_filter import GPSFilter
from utils.odm_monitor import ODMProcessMonitor
2024-12-23 11:31:20 +08:00
from utils.gps_extractor import GPSExtractor
from utils.grid_divider import GridDivider
from utils.logger import setup_logger
from utils.visualizer import FilterVisualizer
from post_pro.merge_tif import MergeTif
2024-12-29 12:03:53 +08:00
from post_pro.merge_obj import MergeObj
2024-12-31 15:01:47 +08:00
from post_pro.merge_laz import MergePly
2024-12-23 11:31:20 +08:00
@dataclass
class PreprocessConfig:
"""预处理配置类"""
image_dir: str
output_dir: str
# 聚类过滤参数
cluster_eps: float = 0.01
cluster_min_samples: int = 5
# 时间组重叠过滤参数
time_group_overlap_threshold: float = 0.7
time_group_interval: timedelta = timedelta(minutes=5)
# 孤立点过滤参数
filter_distance_threshold: float = 0.001 # 经纬度距离
filter_min_neighbors: int = 6
# 密集点过滤参数
filter_grid_size: float = 0.001
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
filter_time_threshold: timedelta = timedelta(minutes=5)
# 网格划分参数
grid_overlap: float = 0.05
grid_size: float = 500
# 几个pipline过程是否开启
mode: str = "快拼模式"
2025-01-02 20:11:47 +08:00
produce_dem: bool = False
2024-12-23 11:31:20 +08:00
class ImagePreprocessor:
def __init__(self, config: PreprocessConfig):
self.config = config
2025-01-06 15:50:11 +08:00
# 检查磁盘空间
self._check_disk_space()
2024-12-23 11:31:20 +08:00
# 清理并重建输出目录
if os.path.exists(config.output_dir):
self._clean_output_dir()
self._setup_output_dirs()
# 初始化其他组件
self.logger = setup_logger(config.output_dir)
self.gps_points = None
self.odm_monitor = ODMProcessMonitor(
2024-12-23 11:31:20 +08:00
config.output_dir, mode=config.mode)
self.visualizer = FilterVisualizer(config.output_dir)
def _clean_output_dir(self):
"""清理输出目录"""
try:
shutil.rmtree(self.config.output_dir)
print(f"已清理输出目录: {self.config.output_dir}")
except Exception as e:
print(f"清理输出目录时发生错误: {str(e)}")
raise
def _setup_output_dirs(self):
"""创建必要的输出目录结构"""
try:
# 创建主输出目录
os.makedirs(self.config.output_dir)
# 创建过滤图像保存目录
os.makedirs(os.path.join(self.config.output_dir, 'filter_imgs'))
# 创建日志目录
os.makedirs(os.path.join(self.config.output_dir, 'logs'))
print(f"已创建输出目录结构: {self.config.output_dir}")
except Exception as e:
print(f"创建输出目录时发生错误: {str(e)}")
raise
2025-01-06 15:50:11 +08:00
def _get_directory_size(self, path):
"""获取目录的总大小(字节)"""
total_size = 0
for dirpath, dirnames, filenames in os.walk(path):
for filename in filenames:
file_path = os.path.join(dirpath, filename)
try:
total_size += os.path.getsize(file_path)
except (OSError, FileNotFoundError):
continue
return total_size
def _check_disk_space(self):
"""检查磁盘空间是否足够"""
# 获取输入目录大小
input_size = self._get_directory_size(self.config.image_dir)
# 获取输出目录所在磁盘的剩余空间
output_drive = os.path.splitdrive(
os.path.abspath(self.config.output_dir))[0]
if not output_drive: # 处理Linux/Unix路径
output_drive = '/'
disk_usage = psutil.disk_usage(output_drive)
free_space = disk_usage.free
# 计算所需空间输入大小的1.5倍)
2025-01-07 10:08:48 +08:00
required_space = input_size * 12
2025-01-06 15:50:11 +08:00
if free_space < required_space:
error_msg = (
f"磁盘空间不足!\n"
f"输入目录大小: {input_size / (1024**3):.2f} GB\n"
f"所需空间: {required_space / (1024**3):.2f} GB\n"
f"可用空间: {free_space / (1024**3):.2f} GB\n"
f"在驱动器 {output_drive}"
)
raise RuntimeError(error_msg)
2024-12-23 11:31:20 +08:00
def extract_gps(self) -> pd.DataFrame:
"""提取GPS数据"""
self.logger.info("开始提取GPS数据")
extractor = GPSExtractor(self.config.image_dir)
self.gps_points = extractor.extract_all_gps()
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
2025-01-04 15:19:23 +08:00
def cluster(self):
2024-12-23 11:31:20 +08:00
"""使用DBSCAN对GPS点进行聚类只保留最大的类"""
previous_points = self.gps_points.copy()
clusterer = GPSCluster(
2025-01-06 17:18:03 +08:00
self.gps_points,
eps=self.config.cluster_eps,
min_samples=self.config.cluster_min_samples
)
2024-12-23 11:31:20 +08:00
self.clustered_points = clusterer.fit()
2025-01-06 17:18:03 +08:00
self.gps_points = clusterer.get_cluster_stats(self.clustered_points)
2024-12-23 11:31:20 +08:00
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "1-Clustering")
2025-01-04 15:19:23 +08:00
def filter_isolated_points(self):
"""过滤孤立点"""
filter = GPSFilter(self.config.output_dir)
previous_points = self.gps_points.copy()
2025-01-06 17:18:03 +08:00
2025-01-04 15:19:23 +08:00
self.gps_points = filter.filter_isolated_points(
self.gps_points,
self.config.filter_distance_threshold,
self.config.filter_min_neighbors,
)
2024-12-23 11:31:20 +08:00
2025-01-04 15:19:23 +08:00
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "2-Isolated Points")
2024-12-23 11:31:20 +08:00
2025-01-04 15:19:23 +08:00
def filter_time_group_overlap(self):
"""过滤重叠的时间组"""
2024-12-23 11:31:20 +08:00
previous_points = self.gps_points.copy()
filter = TimeGroupOverlapFilter(
self.config.image_dir,
self.config.output_dir,
overlap_threshold=self.config.time_group_overlap_threshold
)
2025-01-06 17:18:03 +08:00
self.gps_points = filter.filter_overlapping_groups(
2025-01-04 15:19:23 +08:00
self.gps_points,
2024-12-23 11:31:20 +08:00
time_threshold=self.config.time_group_interval
)
self.visualizer.visualize_filter_step(
2025-01-04 15:19:23 +08:00
self.gps_points, previous_points, "3-Time Group Overlap")
2024-12-23 11:31:20 +08:00
2024-12-31 22:29:24 +08:00
def divide_grids(self) -> Tuple[Dict[tuple, pd.DataFrame], Dict[tuple, tuple]]:
2025-01-02 16:39:46 +08:00
"""划分网格
Returns:
tuple: (grid_points, translations)
- grid_points: 网格点数据字典
- translations: 网格平移量字典
"""
2024-12-23 14:21:42 +08:00
grid_divider = GridDivider(
overlap=self.config.grid_overlap,
2025-01-04 14:49:42 +08:00
grid_size=self.config.grid_size,
2024-12-23 14:21:42 +08:00
output_dir=self.config.output_dir
)
2025-01-04 14:49:42 +08:00
grids, translations, grid_points = grid_divider.adjust_grid_size_and_overlap(
self.gps_points
2024-12-23 11:31:20 +08:00
)
2025-01-04 14:49:42 +08:00
grid_divider.visualize_grids(self.gps_points, grids)
2024-12-31 21:37:44 +08:00
2024-12-31 22:29:24 +08:00
return grid_points, translations
2024-12-23 11:31:20 +08:00
2024-12-31 21:37:44 +08:00
def copy_images(self, grid_points: Dict[tuple, pd.DataFrame]):
2024-12-23 11:31:20 +08:00
"""复制图像到目标文件夹"""
self.logger.info("开始复制图像文件")
2024-12-31 21:37:44 +08:00
for grid_id, points in grid_points.items():
2024-12-23 11:31:20 +08:00
output_dir = os.path.join(
2025-01-06 15:50:11 +08:00
self.config.output_dir,
f"grid_{grid_id[0]}_{grid_id[1]}",
"project",
2025-01-02 17:21:23 +08:00
"images"
2024-12-23 11:31:20 +08:00
)
os.makedirs(output_dir, exist_ok=True)
2025-01-02 16:39:46 +08:00
for point in tqdm(points, desc=f"复制网格 ({grid_id[0]},{grid_id[1]}) 的图像"):
2024-12-23 11:31:20 +08:00
src = os.path.join(self.config.image_dir, point["file"])
dst = os.path.join(output_dir, point["file"])
shutil.copy(src, dst)
2025-01-06 15:50:11 +08:00
self.logger.info(
f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像")
2024-12-23 11:31:20 +08:00
2025-01-02 20:11:47 +08:00
def merge_tif(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool):
2024-12-29 12:03:53 +08:00
"""合并所有网格的影像产品"""
self.logger.info("开始合并所有影像产品")
merger = MergeTif(self.config.output_dir)
2025-01-02 20:11:47 +08:00
merger.merge_all_tifs(grid_points, produce_dem)
2024-12-29 12:03:53 +08:00
2025-01-02 16:39:46 +08:00
def merge_ply(self, grid_points: Dict[tuple, pd.DataFrame]):
"""合并所有网格的PLY点云"""
self.logger.info("开始合并PLY点云")
merger = MergePly(self.config.output_dir)
merger.merge_grid_laz(grid_points)
2024-12-31 22:29:24 +08:00
def merge_obj(self, grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
2024-12-29 12:03:53 +08:00
"""合并所有网格的OBJ模型"""
self.logger.info("开始合并OBJ模型")
merger = MergeObj(self.config.output_dir)
2024-12-31 22:29:24 +08:00
merger.merge_grid_obj(grid_points, translations)
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
def post_process(self, successful_grid_points: Dict[tuple, pd.DataFrame], grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
2025-01-09 11:45:55 +08:00
"""后处理:合并或复制处理结果"""
2025-01-06 15:50:11 +08:00
if len(successful_grid_points) == 1:
2025-01-09 11:45:55 +08:00
# 获取唯一成功的网格ID
grid_id = list(successful_grid_points.keys())[0]
self.logger.info(f"只有一个网格 {grid_id} 成功处理,直接复制结果")
# 构建源目录路径(成功网格的输出目录)
src_dir = os.path.join(
self.config.output_dir, f"grid_{grid_id[0]}_{grid_id[1]}", "project")
# 复制正射影像
if self.config.mode == "快拼模式":
shutil.copy2(os.path.join(src_dir, "odm_orthophoto", "odm_orthophoto.original.tif"),
os.path.join(self.config.output_dir,
"orthophoto.tif")
)
elif self.config.mode == "三维模式":
shutil.copy2(os.path.join(src_dir, "odm_georeferencing", "odm_georeferenced_model.laz"),
os.path.join(self.config.output_dir,
"pointcloud.laz")
)
shutil.copytree(os.path.join(src_dir, "odm_texturing"),
os.path.join(self.config.output_dir, "texturing"))
elif self.config.mode == "重建模式":
shutil.copy2(os.path.join(src_dir, "odm_orthophoto", "odm_orthophoto.tif"),
os.path.join(self.config.output_dir,
"orthophoto.tif")
)
shutil.copy2(os.path.join(src_dir, "odm_georeferencing", "odm_georeferenced_model.laz"),
os.path.join(self.config.output_dir,
"odm_georeferenced_model.laz")
)
shutil.copytree(os.path.join(src_dir, "odm_texturing"),
os.path.join(self.config.output_dir, "texturing"))
if self.config.produce_dem:
shutil.copy2(
os.path.join(src_dir, "odm_dem", "dsm.tif"),
os.path.join(self.config.output_dir, "dsm.tif")
)
shutil.copy2(
os.path.join(src_dir, "odm_dem", "dtm.tif"),
os.path.join(self.config.output_dir, "dtm.tif")
)
self.logger.info("单网格结果复制完成")
2025-01-06 15:50:11 +08:00
return
2025-01-09 11:45:55 +08:00
# 如果有多个网格,执行合并操作
2025-01-06 15:50:11 +08:00
elif len(successful_grid_points) < len(grid_points):
self.logger.warning(
f"{len(grid_points) - len(successful_grid_points)} 个网格处理失败,"
f"将只合并成功处理的 {len(successful_grid_points)} 个网格"
)
2025-01-09 11:45:55 +08:00
if self.config.mode == "快拼模式":
self.merge_tif(successful_grid_points, self.config.produce_dem)
elif self.config.mode == "三维模式":
self.merge_ply(successful_grid_points)
self.merge_obj(successful_grid_points, translations)
else:
self.merge_tif(successful_grid_points, self.config.produce_dem)
2025-01-04 17:54:03 +08:00
self.merge_ply(successful_grid_points)
self.merge_obj(successful_grid_points, translations)
2024-12-29 12:03:53 +08:00
2024-12-23 11:31:20 +08:00
def process(self):
"""执行完整的预处理流程"""
try:
self.extract_gps()
self.cluster()
2025-01-04 15:19:23 +08:00
self.filter_isolated_points()
self.filter_time_group_overlap()
2024-12-31 22:29:24 +08:00
grid_points, translations = self.divide_grids()
2024-12-23 11:31:20 +08:00
self.copy_images(grid_points)
self.logger.info("预处理任务完成")
2025-01-06 15:50:11 +08:00
successful_grid_points = self.odm_monitor.process_all_grids(
grid_points, self.config.produce_dem)
self.post_process(successful_grid_points,
grid_points, translations)
2025-01-04 17:54:03 +08:00
2024-12-23 11:31:20 +08:00
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
raise
if __name__ == "__main__":
# 创建配置
config = PreprocessConfig(
2025-01-09 11:45:55 +08:00
image_dir=r"E:\datasets\UAV\134\project\images",
output_dir=r"G:\ODM_output\134",
2024-12-23 11:31:20 +08:00
cluster_eps=0.01,
cluster_min_samples=5,
# 添加时间组重叠过滤参数
time_group_overlap_threshold=0.7,
time_group_interval=timedelta(minutes=5),
filter_distance_threshold=0.001,
filter_min_neighbors=6,
filter_grid_size=0.001,
filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5),
2025-01-06 19:48:27 +08:00
grid_size=800,
2025-01-04 10:12:08 +08:00
grid_overlap=0.05,
2024-12-23 11:31:20 +08:00
2025-01-09 11:45:55 +08:00
mode="快拼模式",
2025-01-02 20:11:47 +08:00
produce_dem=False,
2024-12-23 11:31:20 +08:00
)
# 创建处理器并执行
processor = ImagePreprocessor(config)
processor.process()