UAV/post_pro/merge_obj.py

189 lines
7.1 KiB
Python
Raw Normal View History

2024-12-29 12:03:53 +08:00
import os
import logging
import numpy as np
from typing import Dict
import pandas as pd
class MergeObj:
def __init__(self, output_dir: str):
self.output_dir = output_dir
self.logger = logging.getLogger('UAV_Preprocess.MergeObj')
2024-12-31 20:37:35 +08:00
def read_obj(self, file_path):
"""读取.obj文件返回顶点列表和面列表"""
vertices = []
faces = []
with open(file_path, 'r') as file:
for line in file:
parts = line.split()
if len(parts) == 0:
continue
if parts[0] == 'v': # 顶点
vertices.append([float(parts[1]), float(parts[2]), float(parts[3])])
elif parts[0] == 'f': # 面
faces.append([int(parts[1].split('/')[0]), int(parts[2].split('/')[0]), int(parts[3].split('/')[0])])
return vertices, faces
def write_obj(self, file_path, vertices, faces):
"""将修改后的顶点和面列表写入到.obj文件"""
with open(file_path, 'w') as file:
for vertex in vertices:
file.write(f"v {vertex[0]} {vertex[1]} {vertex[2]}\n")
for face in faces:
file.write(f"f {face[0]} {face[1]} {face[2]}\n")
def translate_vertices(self, vertices, translation):
"""平移顶点"""
return [[v[0] + translation[0], v[1] + translation[1], v[2] + translation[2]] for v in vertices]
def merge_two_objs(self, obj1_path: str, obj2_path: str, output_path: str, translation):
"""合并两个OBJ文件"""
2024-12-29 12:03:53 +08:00
try:
2024-12-31 20:37:35 +08:00
self.logger.info(f"开始合并OBJ模型:\n输入1: {obj1_path}\n输入2: {obj2_path}")
2024-12-29 12:03:53 +08:00
# 检查输入文件是否存在
if not os.path.exists(obj1_path) or not os.path.exists(obj2_path):
raise FileNotFoundError("输入模型文件不存在")
2024-12-31 20:37:35 +08:00
# 读取两个obj文件
vertices1, faces1 = self.read_obj(obj1_path)
vertices2, faces2 = self.read_obj(obj2_path)
# 平移第二个模型的顶点
vertices2_translated = self.translate_vertices(vertices2, translation)
# 合并顶点和面
all_vertices = vertices1 + vertices2_translated
all_faces = faces1 + [[f[0] + len(vertices1), f[1] + len(vertices1), f[2] + len(vertices1)] for f in faces2]
# 写入合并后的obj文件
self.write_obj(output_path, all_vertices, all_faces)
2024-12-29 12:03:53 +08:00
self.logger.info(f"模型合并成功,已保存至: {output_path}")
except Exception as e:
self.logger.error(f"合并OBJ模型时发生错误: {str(e)}", exc_info=True)
raise
2024-12-31 20:37:35 +08:00
def calculate_translation(self, grid_idx: int, grid_points: Dict[int, pd.DataFrame], grid_size: float) -> tuple:
"""根据网格索引和大小计算平移量"""
# 从grid_points中获取网格划分器
grid_divider = grid_points.get('grid_divider', None)
if grid_divider is None:
# 如果没有grid_divider使用默认的计算方式
row = grid_idx // 2
col = grid_idx % 2
else:
# 使用grid_divider获取正确的网格坐标
row, col = grid_divider.get_grid_coordinates(grid_idx)
# 计算平移量,考虑到重叠
overlap_factor = 0.9 # 重叠因子与grid_divider中的overlap对应
x_translation = col * grid_size * overlap_factor
y_translation = row * grid_size * overlap_factor
self.logger.info(
f"网格 {grid_idx} 的位置: 行={row}, 列={col}"
)
return (x_translation, y_translation, 0) # z轴不需要平移
def merge_grid_obj(self, grid_points: Dict[int, pd.DataFrame], grid_size: float = 500):
2024-12-29 12:03:53 +08:00
"""合并所有网格的OBJ模型"""
self.logger.info("开始合并所有网格的OBJ模型")
if len(grid_points) < 2:
self.logger.info("只有一个网格,无需合并")
return
input_obj1, input_obj2 = None, None
merge_count = 0
try:
for grid_idx, points in grid_points.items():
2024-12-31 20:37:35 +08:00
if grid_idx == 'grid_divider': # 跳过grid_divider对象
continue
2024-12-29 12:03:53 +08:00
grid_obj = os.path.join(
self.output_dir,
f"grid_{grid_idx + 1}",
"project",
2024-12-31 20:37:35 +08:00
"odm_texturing",
2024-12-29 12:03:53 +08:00
"odm_textured_model_geo.obj"
)
if not os.path.exists(grid_obj):
2024-12-31 20:37:35 +08:00
self.logger.warning(f"网格 {grid_idx + 1} 的OBJ文件不存在: {grid_obj}")
2024-12-29 12:03:53 +08:00
continue
if input_obj1 is None:
input_obj1 = grid_obj
self.logger.info(f"设置第一个输入OBJ: {input_obj1}")
else:
input_obj2 = grid_obj
2024-12-31 20:37:35 +08:00
output_obj = os.path.join(self.output_dir, f"merged_model_{merge_count}.obj")
2024-12-29 12:03:53 +08:00
2024-12-31 20:37:35 +08:00
# 计算当前网格的平移量
translation = self.calculate_translation(grid_idx, grid_points, grid_size)
2024-12-29 12:03:53 +08:00
self.logger.info(
f"开始合并第 {merge_count + 1} 次:\n"
2024-12-31 20:37:35 +08:00
f"平移量: {translation}\n"
2024-12-29 12:03:53 +08:00
f"输出: {output_obj}"
)
2024-12-31 20:37:35 +08:00
self.merge_two_objs(input_obj1, input_obj2, output_obj, translation)
2024-12-29 12:03:53 +08:00
merge_count += 1
input_obj1 = output_obj
input_obj2 = None
2024-12-31 20:37:35 +08:00
# 最后的结果重命名为merged_model.obj
final_output = os.path.join(self.output_dir, "merged_model.obj")
if os.path.exists(input_obj1) and input_obj1 != final_output:
os.rename(input_obj1, final_output)
2024-12-29 12:03:53 +08:00
self.logger.info(
f"OBJ模型合并完成共执行 {merge_count} 次合并,"
2024-12-31 20:37:35 +08:00
f"最终输出文件: {final_output}"
2024-12-29 12:03:53 +08:00
)
except Exception as e:
self.logger.error(f"OBJ模型合并过程中发生错误: {str(e)}", exc_info=True)
2024-12-31 14:23:45 +08:00
raise
if __name__ == "__main__":
import sys
sys.path.append(os.path.dirname(
os.path.dirname(os.path.abspath(__file__))))
from utils.logger import setup_logger
import pandas as pd
# 设置输出目录和日志
output_dir = r"G:\ODM_output\1009"
setup_logger(output_dir)
# 构造测试用的grid_points字典
# 假设我们有两个网格每个网格包含一些GPS点的DataFrame
grid_points = {
0: pd.DataFrame({
'latitude': [39.9, 39.91],
'longitude': [116.3, 116.31],
'altitude': [100, 101]
}),
1: pd.DataFrame({
'latitude': [39.92, 39.93],
'longitude': [116.32, 116.33],
'altitude': [102, 103]
})
}
# 创建MergeObj实例并执行合并
merge_obj = MergeObj(output_dir)
merge_obj.merge_grid_obj(grid_points)