UAV/utils/odm_monitor.py

291 lines
11 KiB
Python
Raw Normal View History

2024-12-23 11:31:20 +08:00
import os
2025-01-06 16:02:26 +08:00
import time
2024-12-23 11:31:20 +08:00
import logging
2024-12-26 15:30:50 +08:00
import subprocess
from typing import Dict, Tuple
import pandas as pd
2025-01-04 17:54:03 +08:00
import numpy as np
from osgeo import gdal
2024-12-23 11:31:20 +08:00
2025-01-04 17:54:03 +08:00
class NotOverlapError(Exception):
"""图像重叠度不足异常"""
pass
2025-01-06 15:50:11 +08:00
2024-12-23 11:31:20 +08:00
class ODMProcessMonitor:
"""ODM处理监控器"""
2024-12-23 11:31:20 +08:00
def __init__(self, output_dir: str, mode: str = "快拼模式"):
self.output_dir = output_dir
2024-12-23 11:31:20 +08:00
self.logger = logging.getLogger('UAV_Preprocess.ODMMonitor')
self.mode = mode
def _check_success(self, grid_dir: str) -> bool:
2025-01-04 17:54:03 +08:00
"""检查ODM是否执行成功
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
检查项目:
2025-01-09 19:32:21 +08:00
1. 必要的文件夹和文件是否存在
2. 产品文件是否有效
2025-01-04 17:54:03 +08:00
"""
2025-01-09 19:32:21 +08:00
project_dir = os.path.join(grid_dir, 'project')
# 根据不同模式检查不同的产品
if self.mode == "快拼模式":
# 只检查正射影像
if not self._check_orthophoto(project_dir):
return False
elif self.mode == "三维模式":
# 检查点云和实景三维
if not all([
2025-01-13 10:52:41 +08:00
os.path.exists(os.path.join(project_dir, 'odm_georeferencing', 'odm_georeferenced_model.laz')),
os.path.exists(os.path.join(project_dir, 'odm_texturing', 'odm_textured_model_geo.obj'))
2025-01-09 19:32:21 +08:00
]):
self.logger.error("点云或实景三维文件夹未生成")
return False
# TODO: 添加点云和实景三维的质量检查
elif self.mode == "重建模式":
# 检查所有产品
if not all([
2025-01-13 10:52:41 +08:00
os.path.exists(os.path.join(project_dir, 'odm_georeferencing', 'odm_georeferenced_model.laz')),
os.path.exists(os.path.join(project_dir, 'odm_texturing', 'odm_textured_model_geo.obj'))
2025-01-09 19:32:21 +08:00
]):
self.logger.error("部分必要的文件夹未生成")
return False
# 检查正射影像
if not self._check_orthophoto(project_dir):
return False
# TODO: 添加点云和实景三维的质量检查
2025-01-06 15:50:11 +08:00
2025-01-09 19:32:21 +08:00
return True
2025-01-06 15:50:11 +08:00
2025-01-13 10:52:41 +08:00
# TODO 正射影像怎么检查最好
2025-01-09 19:32:21 +08:00
def _check_orthophoto(self, project_dir: str) -> bool:
"""检查正射影像的质量"""
ortho_path = os.path.join(project_dir, 'odm_orthophoto', 'odm_orthophoto.original.tif')
2025-01-04 17:54:03 +08:00
if not os.path.exists(ortho_path):
self.logger.error("正射影像文件未生成")
return False
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
# 检查文件大小
file_size_mb = os.path.getsize(ortho_path) / (1024 * 1024) # 转换为MB
if file_size_mb < 1:
self.logger.error(f"正射影像文件过小: {file_size_mb:.2f}MB")
return False
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
try:
# 打开影像文件
ds = gdal.Open(ortho_path)
if ds is None:
self.logger.error("无法打开正射影像文件")
return False
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
# 读取第一个波段
band = ds.GetRasterBand(1)
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
# 获取统计信息
stats = band.GetStatistics(False, True)
if stats is None:
self.logger.error("无法获取影像统计信息")
return False
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
min_val, max_val, mean, std = stats
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
# 计算空值比例
no_data_value = band.GetNoDataValue()
array = band.ReadAsArray()
if no_data_value is not None:
no_data_ratio = np.sum(array == no_data_value) / array.size
else:
no_data_ratio = 0
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
# 检查空值比例是否过高超过50%
if no_data_ratio > 0.5:
self.logger.error(f"正射影像空值比例过高: {no_data_ratio:.2%}")
return False
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
# 检查影像是否全黑或全白
if max_val - min_val < 1:
self.logger.error("正射影像可能无效:像素值范围过小")
return False
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
ds = None # 关闭数据集
return True
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
except Exception as e:
self.logger.error(f"检查正射影像时发生错误: {str(e)}")
return False
2024-12-23 11:31:20 +08:00
2025-01-09 11:45:55 +08:00
def run_odm_with_monitor(self, grid_dir: str, grid_id: tuple, produce_dem: bool = False) -> Tuple[bool, str]:
2024-12-26 15:30:50 +08:00
"""运行ODM命令"""
2025-01-09 11:45:55 +08:00
# if produce_dem and self.mode == "快拼模式":
# self.logger.error("快拼模式下无法生成DEM请调整生产参数")
# return False, "快拼模式下无法生成DEM请调整生产参数"
2025-01-02 20:11:47 +08:00
2024-12-31 21:37:44 +08:00
self.logger.info(f"开始处理网格 ({grid_id[0]},{grid_id[1]})")
2025-01-06 19:48:27 +08:00
success = False
error_msg = ""
2025-01-04 17:54:03 +08:00
max_retries = 3
current_try = 0
use_lowest_quality = True # 初始使用lowest quality
2024-12-26 11:32:46 +08:00
2025-01-04 17:54:03 +08:00
while current_try < max_retries:
current_try += 1
2025-01-06 15:50:11 +08:00
self.logger.info(
f"{current_try} 次尝试处理网格 ({grid_id[0]},{grid_id[1]})")
2025-01-02 20:11:47 +08:00
2025-01-04 17:54:03 +08:00
try:
# 构建Docker命令
grid_dir = grid_dir[0].lower()+grid_dir[1:].replace('\\', '/')
docker_command = (
f"docker run --gpus all -ti --rm "
f"-v {grid_dir}:/datasets "
f"opendronemap/odm:gpu "
f"--project-path /datasets project "
f"--max-concurrency 15 "
f"--force-gps "
)
# 根据是否使用lowest quality添加参数
if use_lowest_quality:
docker_command += f"--feature-quality lowest "
2025-01-06 19:48:27 +08:00
docker_command += f"--orthophoto-resolution 8 "
2025-01-04 17:54:03 +08:00
if produce_dem:
docker_command += (
f"--dsm "
f"--dtm "
)
2025-01-09 11:45:55 +08:00
if self.mode == "快拼模式":
2025-01-04 17:54:03 +08:00
docker_command += (
2025-01-09 11:45:55 +08:00
#f"--fast-orthophoto "
2025-01-04 17:54:03 +08:00
f"--skip-3dmodel "
)
2025-01-09 11:45:55 +08:00
elif self.mode == "三维模式":
docker_command += (
f"--skip-orthophoto "
)
2025-01-04 17:54:03 +08:00
docker_command += "--rerun-all"
self.logger.info(docker_command)
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
result = subprocess.run(
docker_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = result.stdout.decode(
'utf-8'), result.stderr.decode('utf-8')
2024-12-26 11:20:55 +08:00
2025-01-04 17:54:03 +08:00
stdout_lines = stdout.strip().split('\n')
2025-01-06 15:50:11 +08:00
last_lines = '\n'.join(
stdout_lines[-50:] if len(stdout_lines) > 10 else stdout_lines)
self.logger.info(f"==========stdout==========: {last_lines}")
if stderr:
self.logger.error(f"docker run指令执行失败")
self.logger.error(f"==========stderr==========: {stderr}")
if "error during connect" in stderr or "The system cannot find the file specified" in stderr:
2025-01-06 19:48:27 +08:00
error_msg = "Docker没有启动请启动Docker"
2025-01-06 15:50:11 +08:00
elif "user declined directory sharing" in stderr:
2025-01-06 19:48:27 +08:00
error_msg = "Docker无法访问目录请检查目录权限和共享设置"
2025-01-06 15:50:11 +08:00
else:
2025-01-06 19:48:27 +08:00
error_msg = "Docker运行失败需要人工排查错误"
break
2025-01-04 17:54:03 +08:00
else:
2025-01-06 15:50:11 +08:00
self.logger.info("docker run指令执行成功")
if "ODM app finished" in last_lines:
self.logger.info("ODM处理完成")
if self._check_success(grid_dir):
self.logger.info(
f"网格 ({grid_id[0]},{grid_id[1]}) 处理成功")
2025-01-06 19:48:27 +08:00
success = True
error_msg = ""
break
2025-01-06 15:50:11 +08:00
else:
self.logger.error(
f"虽然ODM处理完成但是生产产品质量可能不合格需要人工检查")
2025-01-06 19:48:27 +08:00
raise NotOverlapError
# TODO 先写成这样,后面这三种情况可能处理不一样
2025-01-06 15:50:11 +08:00
elif "enough overlap" in last_lines:
raise NotOverlapError
elif "out of memory" in last_lines:
2025-01-06 19:48:27 +08:00
raise NotOverlapError
2025-01-06 15:50:11 +08:00
elif "strange values" in last_lines:
2025-01-06 19:48:27 +08:00
raise NotOverlapError
2025-01-06 15:50:11 +08:00
else:
2025-01-06 19:48:27 +08:00
raise NotOverlapError
2025-01-04 17:54:03 +08:00
except NotOverlapError:
if use_lowest_quality:
2025-01-06 15:50:11 +08:00
self.logger.warning(
"检测到not overlap错误移除lowest quality参数后重试")
2025-01-04 17:54:03 +08:00
use_lowest_quality = False
2025-01-06 19:48:27 +08:00
time.sleep(10)
2025-01-04 17:54:03 +08:00
continue
else:
2025-01-06 15:50:11 +08:00
self.logger.error(
2025-01-06 19:48:27 +08:00
"即使移除lowest quality参数后仍然出现错误")
error_msg = "图像重叠度不足,需要人工检查数据集的采样间隔情况"
break
2025-01-06 15:50:11 +08:00
2025-01-06 19:48:27 +08:00
return success, error_msg
2025-01-04 17:54:03 +08:00
def process_all_grids(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool) -> Dict[tuple, pd.DataFrame]:
"""处理所有网格
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
Returns:
Dict[tuple, pd.DataFrame]: 成功处理的网格点数据字典
"""
self.logger.info("开始执行网格处理")
2025-01-04 17:54:03 +08:00
successful_grid_points = {}
failed_grids = []
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
for grid_id, points in grid_points.items():
grid_dir = os.path.join(
2024-12-31 21:37:44 +08:00
self.output_dir, f'grid_{grid_id[0]}_{grid_id[1]}'
)
2025-01-04 17:54:03 +08:00
try:
success, error_msg = self.run_odm_with_monitor(
grid_dir=grid_dir,
grid_id=grid_id,
produce_dem=produce_dem
)
if success:
successful_grid_points[grid_id] = points
else:
2025-01-06 15:50:11 +08:00
self.logger.error(
f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败: {error_msg}")
2025-01-04 17:54:03 +08:00
failed_grids.append((grid_id, error_msg))
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
except Exception as e:
error_msg = str(e)
2025-01-06 15:50:11 +08:00
self.logger.error(
f"处理网格 ({grid_id[0]},{grid_id[1]}) 时发生异常: {error_msg}")
2025-01-04 17:54:03 +08:00
failed_grids.append((grid_id, error_msg))
2025-01-06 15:50:11 +08:00
2025-01-04 17:54:03 +08:00
# 汇总处理结果
total_grids = len(grid_points)
failed_count = len(failed_grids)
success_count = len(successful_grid_points)
2025-01-06 15:50:11 +08:00
self.logger.info(
f"网格处理完成。总计: {total_grids}, 成功: {success_count}, 失败: {failed_count}")
2025-01-04 17:54:03 +08:00
if failed_grids:
self.logger.error("失败的网格:")
for grid_id, error_msg in failed_grids:
2025-01-06 15:50:11 +08:00
self.logger.error(
f"网格 ({grid_id[0]},{grid_id[1]}): {error_msg}")
2025-01-04 17:54:03 +08:00
if len(successful_grid_points) == 0:
raise Exception("所有网格处理都失败,无法继续处理")
2025-01-04 17:54:03 +08:00
return successful_grid_points