UAV/post_pro/merge_tif.py

290 lines
12 KiB
Python
Raw Normal View History

2024-12-23 11:31:20 +08:00
from osgeo import gdal
import logging
import os
2024-12-29 12:03:53 +08:00
from typing import Dict
import pandas as pd
2025-01-02 20:11:47 +08:00
import time
import shutil
import rasterio
from rasterio.mask import mask
from rasterio.transform import Affine, rowcol
import fiona
from edt import edt
import numpy as np
import math
2024-12-23 11:31:20 +08:00
class MergeTif:
2024-12-29 12:03:53 +08:00
def __init__(self, output_dir: str):
self.output_dir = output_dir
2024-12-23 11:31:20 +08:00
self.logger = logging.getLogger('UAV_Preprocess.MergeTif')
2025-04-11 17:22:11 +08:00
def merge_orthophoto(self, grid_lt):
"""合并网格的正射影像"""
2024-12-29 12:03:53 +08:00
try:
all_orthos_and_ortho_cuts = []
2025-04-11 17:22:11 +08:00
for grid_id in grid_lt:
grid_ortho_dir = os.path.join(
2025-01-17 10:46:39 +08:00
self.output_dir,
f"grid_{grid_id[0]}_{grid_id[1]}",
"project",
"odm_orthophoto",
2025-01-17 10:46:39 +08:00
)
tif_path = os.path.join(grid_ortho_dir, "odm_orthophoto.tif")
tif_mask = os.path.join(grid_ortho_dir, "cutline.gpkg")
output_cut_tif = os.path.join(
grid_ortho_dir, "odm_orthophoto_cut.tif")
output_feathered_tif = os.path.join(
grid_ortho_dir, "odm_orthophoto_feathered.tif")
self.compute_mask_raster(
tif_path, tif_mask, output_cut_tif, blend_distance=20)
self.feather_raster(
tif_path, output_feathered_tif, blend_distance=20)
all_orthos_and_ortho_cuts.append(
[output_feathered_tif, output_cut_tif])
orthophoto_vars = {
'TILED': 'NO',
'COMPRESS': False,
'PREDICTOR': '1',
'BIGTIFF': 'IF_SAFER',
'BLOCKXSIZE': 512,
'BLOCKYSIZE': 512,
'NUM_THREADS': 15
}
self.merge(all_orthos_and_ortho_cuts, os.path.join(
self.output_dir, "orthophoto.tif"), orthophoto_vars)
self.logger.info("所有产品合并完成")
except Exception as e:
self.logger.error(f"产品合并过程中发生错误: {str(e)}", exc_info=True)
raise
2024-12-31 14:23:45 +08:00
def compute_mask_raster(self, input_raster, vector_mask, output_raster, blend_distance=20, only_max_coords_feature=False):
if not os.path.exists(input_raster):
print("Cannot mask raster, %s does not exist" % input_raster)
return
if not os.path.exists(vector_mask):
print("Cannot mask raster, %s does not exist" % vector_mask)
return
print("Computing mask raster: %s" % output_raster)
with rasterio.open(input_raster, 'r') as rast:
with fiona.open(vector_mask) as src:
burn_features = src
if only_max_coords_feature:
max_coords_count = 0
max_coords_feature = None
for feature in src:
if feature is not None:
# No complex shapes
if len(feature['geometry']['coordinates'][0]) > max_coords_count:
max_coords_count = len(
feature['geometry']['coordinates'][0])
max_coords_feature = feature
if max_coords_feature is not None:
burn_features = [max_coords_feature]
shapes = [feature["geometry"] for feature in burn_features]
out_image, out_transform = mask(rast, shapes, nodata=0)
if blend_distance > 0:
if out_image.shape[0] >= 4:
# alpha_band = rast.dataset_mask()
alpha_band = out_image[-1]
dist_t = edt(alpha_band, black_border=True, parallel=0)
dist_t[dist_t <= blend_distance] /= blend_distance
dist_t[dist_t > blend_distance] = 1
np.multiply(alpha_band, dist_t,
out=alpha_band, casting="unsafe")
else:
print(
"%s does not have an alpha band, cannot blend cutline!" % input_raster)
with rasterio.open(output_raster, 'w', BIGTIFF="IF_SAFER", **rast.profile) as dst:
dst.colorinterp = rast.colorinterp
dst.write(out_image)
return output_raster
def feather_raster(self, input_raster, output_raster, blend_distance=20):
if not os.path.exists(input_raster):
print("Cannot feather raster, %s does not exist" % input_raster)
return
print("Computing feather raster: %s" % output_raster)
with rasterio.open(input_raster, 'r') as rast:
out_image = rast.read()
if blend_distance > 0:
if out_image.shape[0] >= 4:
alpha_band = out_image[-1]
dist_t = edt(alpha_band, black_border=True, parallel=0)
dist_t[dist_t <= blend_distance] /= blend_distance
dist_t[dist_t > blend_distance] = 1
np.multiply(alpha_band, dist_t,
out=alpha_band, casting="unsafe")
2024-12-29 12:03:53 +08:00
else:
print(
"%s does not have an alpha band, cannot feather raster!" % input_raster)
with rasterio.open(output_raster, 'w', BIGTIFF="IF_SAFER", **rast.profile) as dst:
dst.colorinterp = rast.colorinterp
dst.write(out_image)
return output_raster
def merge(self, input_ortho_and_ortho_cuts, output_orthophoto, orthophoto_vars={}):
"""
Based on https://github.com/mapbox/rio-merge-rgba/
Merge orthophotos around cutlines using a blend buffer.
"""
inputs = []
bounds = None
precision = 7
for o, c in input_ortho_and_ortho_cuts:
inputs.append((o, c))
with rasterio.open(inputs[0][0]) as first:
res = first.res
dtype = first.dtypes[0]
profile = first.profile
num_bands = first.meta['count'] - 1 # minus alpha
colorinterp = first.colorinterp
print("%s valid orthophoto rasters to merge" % len(inputs))
sources = [(rasterio.open(o), rasterio.open(c)) for o, c in inputs]
# scan input files.
# while we're at it, validate assumptions about inputs
xs = []
ys = []
for src, _ in sources:
left, bottom, right, top = src.bounds
xs.extend([left, right])
ys.extend([bottom, top])
if src.profile["count"] < 2:
raise ValueError("Inputs must be at least 2-band rasters")
dst_w, dst_s, dst_e, dst_n = min(xs), min(ys), max(xs), max(ys)
print("Output bounds: %r %r %r %r" % (dst_w, dst_s, dst_e, dst_n))
output_transform = Affine.translation(dst_w, dst_n)
output_transform *= Affine.scale(res[0], -res[1])
# Compute output array shape. We guarantee it will cover the output
# bounds completely.
output_width = int(math.ceil((dst_e - dst_w) / res[0]))
output_height = int(math.ceil((dst_n - dst_s) / res[1]))
# Adjust bounds to fit.
dst_e, dst_s = output_transform * (output_width, output_height)
print("Output width: %d, height: %d" %
(output_width, output_height))
print("Adjusted bounds: %r %r %r %r" % (dst_w, dst_s, dst_e, dst_n))
profile["transform"] = output_transform
profile["height"] = output_height
profile["width"] = output_width
profile["tiled"] = orthophoto_vars.get('TILED', 'YES') == 'YES'
profile["blockxsize"] = orthophoto_vars.get('BLOCKXSIZE', 512)
profile["blockysize"] = orthophoto_vars.get('BLOCKYSIZE', 512)
profile["compress"] = orthophoto_vars.get('COMPRESS', 'LZW')
profile["predictor"] = orthophoto_vars.get('PREDICTOR', '2')
profile["bigtiff"] = orthophoto_vars.get('BIGTIFF', 'IF_SAFER')
profile.update()
# create destination file
with rasterio.open(output_orthophoto, "w", **profile) as dstrast:
dstrast.colorinterp = colorinterp
for idx, dst_window in dstrast.block_windows():
left, bottom, right, top = dstrast.window_bounds(dst_window)
blocksize = dst_window.width
dst_rows, dst_cols = (dst_window.height, dst_window.width)
# initialize array destined for the block
dst_count = first.count
dst_shape = (dst_count, dst_rows, dst_cols)
dstarr = np.zeros(dst_shape, dtype=dtype)
# First pass, write all rasters naively without blending
for src, _ in sources:
src_window = tuple(zip(rowcol(
src.transform, left, top, op=round, precision=precision
), rowcol(
src.transform, right, bottom, op=round, precision=precision
)))
temp = np.zeros(dst_shape, dtype=dtype)
temp = src.read(
out=temp, window=src_window, boundless=True, masked=False
2025-01-02 20:11:47 +08:00
)
2024-12-31 14:23:45 +08:00
# pixels without data yet are available to write
write_region = np.logical_and(
(dstarr[-1] == 0), (temp[-1] != 0) # 0 is nodata
)
np.copyto(dstarr, temp, where=write_region)
# check if dest has any nodata pixels available
if np.count_nonzero(dstarr[-1]) == blocksize:
break
# Second pass, write all feathered rasters
# blending the edges
for src, _ in sources:
src_window = tuple(zip(rowcol(
src.transform, left, top, op=round, precision=precision
), rowcol(
src.transform, right, bottom, op=round, precision=precision
)))
temp = np.zeros(dst_shape, dtype=dtype)
temp = src.read(
out=temp, window=src_window, boundless=True, masked=False
2024-12-29 12:03:53 +08:00
)
2024-12-31 14:23:45 +08:00
where = temp[-1] != 0
for b in range(0, num_bands):
blended = temp[-1] / 255.0 * temp[b] + \
(1 - temp[-1] / 255.0) * dstarr[b]
np.copyto(dstarr[b], blended,
casting='unsafe', where=where)
dstarr[-1][where] = 255.0
# check if dest has any nodata pixels available
if np.count_nonzero(dstarr[-1]) == blocksize:
break
# Third pass, write cut rasters
# blending the cutlines
for _, cut in sources:
src_window = tuple(zip(rowcol(
cut.transform, left, top, op=round, precision=precision
), rowcol(
cut.transform, right, bottom, op=round, precision=precision
)))
temp = np.zeros(dst_shape, dtype=dtype)
temp = cut.read(
out=temp, window=src_window, boundless=True, masked=False
)
2024-12-31 14:23:45 +08:00
# For each band, average alpha values between
# destination raster and cut raster
for b in range(0, num_bands):
blended = temp[-1] / 255.0 * temp[b] + \
(1 - temp[-1] / 255.0) * dstarr[b]
np.copyto(dstarr[b], blended,
casting='unsafe', where=temp[-1] != 0)
2024-12-29 12:03:53 +08:00
dstrast.write(dstarr, window=dst_window)
2024-12-23 11:31:20 +08:00
return output_orthophoto