调整网格id
This commit is contained in:
parent
bfc45b4d27
commit
076282780f
@ -223,7 +223,10 @@ class ImagePreprocessor:
|
||||
|
||||
for grid_id, points in grid_points.items():
|
||||
output_dir = os.path.join(
|
||||
self.config.output_dir, f"grid_{grid_id[0]}_{grid_id[1]}", "project", "images"
|
||||
self.config.output_dir,
|
||||
f"grid_{grid_id[0]}_{grid_id[1]}",
|
||||
"project",
|
||||
"images"
|
||||
)
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
@ -232,8 +235,7 @@ class ImagePreprocessor:
|
||||
src = os.path.join(self.config.image_dir, point["file"])
|
||||
dst = os.path.join(output_dir, point["file"])
|
||||
shutil.copy(src, dst)
|
||||
self.logger.info(
|
||||
f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像")
|
||||
self.logger.info(f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像")
|
||||
|
||||
def merge_tif(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||||
"""合并所有网格的影像产品"""
|
||||
|
@ -1,305 +0,0 @@
|
||||
import os
|
||||
import shutil
|
||||
from datetime import timedelta
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from tqdm import tqdm
|
||||
|
||||
from filter.cluster_filter import GPSCluster
|
||||
from filter.time_group_overlap_filter import TimeGroupOverlapFilter
|
||||
from filter.gps_filter import GPSFilter
|
||||
from utils.odm_monitor import ODMProcessMonitor
|
||||
from utils.gps_extractor import GPSExtractor
|
||||
from utils.grid_divider import GridDivider
|
||||
from utils.logger import setup_logger
|
||||
from utils.visualizer import FilterVisualizer
|
||||
from post_pro.merge_tif import MergeTif
|
||||
from tools.test_docker_run import run_docker_command
|
||||
from post_pro.merge_obj import MergeObj
|
||||
from post_pro.merge_laz import MergePly
|
||||
|
||||
|
||||
@dataclass
|
||||
class PreprocessConfig:
|
||||
"""预处理配置类"""
|
||||
|
||||
image_dir: str
|
||||
output_dir: str
|
||||
# 聚类过滤参数
|
||||
cluster_eps: float = 0.01
|
||||
cluster_min_samples: int = 5
|
||||
# 时间组重叠过滤参数
|
||||
time_group_overlap_threshold: float = 0.7
|
||||
time_group_interval: timedelta = timedelta(minutes=5)
|
||||
# 孤立点过滤参数
|
||||
filter_distance_threshold: float = 0.001 # 经纬度距离
|
||||
filter_min_neighbors: int = 6
|
||||
# 密集点过滤参数
|
||||
filter_grid_size: float = 0.001
|
||||
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
|
||||
filter_time_threshold: timedelta = timedelta(minutes=5)
|
||||
# 网格划分参数
|
||||
grid_overlap: float = 0.05
|
||||
grid_size: float = 500
|
||||
# 几个pipline过程是否开启
|
||||
mode: str = "快拼模式"
|
||||
|
||||
|
||||
class ImagePreprocessor:
|
||||
def __init__(self, config: PreprocessConfig):
|
||||
self.config = config
|
||||
|
||||
# # 清理并重建输出目录
|
||||
# if os.path.exists(config.output_dir):
|
||||
# self._clean_output_dir()
|
||||
# self._setup_output_dirs()
|
||||
|
||||
# 初始化其他组件
|
||||
self.logger = setup_logger(config.output_dir)
|
||||
self.gps_points = None
|
||||
self.odm_monitor = ODMProcessMonitor(
|
||||
config.output_dir, mode=config.mode)
|
||||
self.visualizer = FilterVisualizer(config.output_dir)
|
||||
|
||||
def _clean_output_dir(self):
|
||||
"""清理输出目录"""
|
||||
try:
|
||||
shutil.rmtree(self.config.output_dir)
|
||||
print(f"已清理输出目录: {self.config.output_dir}")
|
||||
except Exception as e:
|
||||
print(f"清理输出目录时发生错误: {str(e)}")
|
||||
raise
|
||||
|
||||
def _setup_output_dirs(self):
|
||||
"""创建必要的输出目录结构"""
|
||||
try:
|
||||
# 创建主输出目录
|
||||
os.makedirs(self.config.output_dir)
|
||||
|
||||
# 创建过滤图像保存目录
|
||||
os.makedirs(os.path.join(self.config.output_dir, 'filter_imgs'))
|
||||
|
||||
# 创建日志目录
|
||||
os.makedirs(os.path.join(self.config.output_dir, 'logs'))
|
||||
|
||||
print(f"已创建输出目录结构: {self.config.output_dir}")
|
||||
except Exception as e:
|
||||
print(f"创建输出目录时发生错误: {str(e)}")
|
||||
raise
|
||||
|
||||
def extract_gps(self) -> pd.DataFrame:
|
||||
"""提取GPS数据"""
|
||||
self.logger.info("开始提取GPS数据")
|
||||
extractor = GPSExtractor(self.config.image_dir)
|
||||
self.gps_points = extractor.extract_all_gps()
|
||||
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
|
||||
return self.gps_points
|
||||
|
||||
def cluster(self) -> pd.DataFrame:
|
||||
"""使用DBSCAN对GPS点进行聚类,只保留最大的类"""
|
||||
self.logger.info("开始聚类")
|
||||
previous_points = self.gps_points.copy()
|
||||
|
||||
# 创建聚类器并执行聚类
|
||||
clusterer = GPSCluster(
|
||||
self.gps_points, output_dir=self.config.output_dir,
|
||||
eps=self.config.cluster_eps, min_samples=self.config.cluster_min_samples)
|
||||
|
||||
# 获取主要类别的点
|
||||
self.clustered_points = clusterer.fit()
|
||||
self.gps_points = clusterer.get_main_cluster(self.clustered_points)
|
||||
|
||||
# 获取统计信息并记录
|
||||
stats = clusterer.get_cluster_stats(self.clustered_points)
|
||||
self.logger.info(
|
||||
f"聚类完成:主要类别包含 {stats['main_cluster_points']} 个点,"
|
||||
f"噪声点 {stats['noise_points']} 个"
|
||||
)
|
||||
|
||||
# 可视化聚类结果
|
||||
self.visualizer.visualize_filter_step(
|
||||
self.gps_points, previous_points, "1-Clustering")
|
||||
|
||||
return self.gps_points
|
||||
|
||||
def filter_time_group_overlap(self) -> pd.DataFrame:
|
||||
"""过滤重叠的时间组"""
|
||||
self.logger.info("开始过滤重叠时间组")
|
||||
|
||||
self.logger.info("开始过滤重叠时间组")
|
||||
previous_points = self.gps_points.copy()
|
||||
|
||||
filter = TimeGroupOverlapFilter(
|
||||
self.config.image_dir,
|
||||
self.config.output_dir,
|
||||
overlap_threshold=self.config.time_group_overlap_threshold
|
||||
)
|
||||
|
||||
deleted_files = filter.filter_overlapping_groups(
|
||||
time_threshold=self.config.time_group_interval
|
||||
)
|
||||
|
||||
# 更新GPS点数据,移除被删除的图像
|
||||
self.gps_points = self.gps_points[~self.gps_points['file'].isin(
|
||||
deleted_files)]
|
||||
self.logger.info(f"重叠时间组过滤后剩余 {len(self.gps_points)} 个GPS点")
|
||||
|
||||
# 可视化过滤结果
|
||||
self.visualizer.visualize_filter_step(
|
||||
self.gps_points, previous_points, "2-Time Group Overlap")
|
||||
|
||||
return self.gps_points
|
||||
|
||||
# TODO 过滤算法还需要更新
|
||||
def filter_points(self) -> pd.DataFrame:
|
||||
"""过滤GPS点"""
|
||||
|
||||
self.logger.info("开始过滤GPS点")
|
||||
filter = GPSFilter(self.config.output_dir)
|
||||
|
||||
# 过滤孤立点
|
||||
previous_points = self.gps_points.copy()
|
||||
self.logger.info(
|
||||
f"开始过滤孤立点(距离阈值: {self.config.filter_distance_threshold}, "
|
||||
f"最小邻居数: {self.config.filter_min_neighbors})"
|
||||
)
|
||||
self.gps_points = filter.filter_isolated_points(
|
||||
self.gps_points,
|
||||
self.config.filter_distance_threshold,
|
||||
self.config.filter_min_neighbors,
|
||||
)
|
||||
self.logger.info(f"孤立点过滤后剩余 {len(self.gps_points)} 个GPS点")
|
||||
|
||||
# 可视化孤立点过滤结果
|
||||
self.visualizer.visualize_filter_step(
|
||||
self.gps_points, previous_points, "3-Isolated Points")
|
||||
|
||||
# # 过滤密集点
|
||||
# previous_points = self.gps_points.copy()
|
||||
# self.logger.info(
|
||||
# f"开始过滤密集点(网格大小: {self.config.filter_grid_size}, "
|
||||
# f"距离阈值: {self.config.filter_dense_distance_threshold})"
|
||||
# )
|
||||
# self.gps_points = filter.filter_dense_points(
|
||||
# self.gps_points,
|
||||
# grid_size=self.config.filter_grid_size,
|
||||
# distance_threshold=self.config.filter_dense_distance_threshold,
|
||||
# time_threshold=self.config.filter_time_threshold,
|
||||
# )
|
||||
# self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
|
||||
|
||||
# # 可视化密集点过滤结果
|
||||
# self.visualizer.visualize_filter_step(
|
||||
# self.gps_points, previous_points, "4-Dense Points")
|
||||
|
||||
return self.gps_points
|
||||
|
||||
def divide_grids(self) -> Tuple[Dict[tuple, pd.DataFrame], Dict[tuple, tuple]]:
|
||||
"""划分网格
|
||||
Returns:
|
||||
tuple: (grid_points, translations)
|
||||
- grid_points: 网格点数据字典
|
||||
- translations: 网格平移量字典
|
||||
"""
|
||||
self.logger.info(f"开始划分网格 (重叠率: {self.config.grid_overlap})")
|
||||
grid_divider = GridDivider(
|
||||
overlap=self.config.grid_overlap,
|
||||
output_dir=self.config.output_dir
|
||||
)
|
||||
grids, translations = grid_divider.divide_grids(
|
||||
self.gps_points, grid_size=self.config.grid_size
|
||||
)
|
||||
grid_points = grid_divider.assign_to_grids(self.gps_points, grids)
|
||||
self.logger.info(f"成功划分为 {len(grid_points)} 个网格")
|
||||
|
||||
return grid_points, translations
|
||||
|
||||
def copy_images(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||||
"""复制图像到目标文件夹"""
|
||||
self.logger.info("开始复制图像文件")
|
||||
|
||||
for grid_id, points in grid_points.items():
|
||||
output_dir = os.path.join(
|
||||
self.config.output_dir, f"grid_{grid_id[0]}_{grid_id[1]}", "project", "images"
|
||||
)
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
for point in tqdm(points, desc=f"复制网格 ({grid_id[0]},{grid_id[1]}) 的图像"):
|
||||
src = os.path.join(self.config.image_dir, point["file"])
|
||||
dst = os.path.join(output_dir, point["file"])
|
||||
shutil.copy(src, dst)
|
||||
self.logger.info(
|
||||
f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像")
|
||||
|
||||
def merge_tif(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||||
"""合并所有网格的影像产品"""
|
||||
self.logger.info("开始合并所有影像产品")
|
||||
merger = MergeTif(self.config.output_dir)
|
||||
merger.merge_all_tifs(grid_points)
|
||||
|
||||
def merge_ply(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||||
"""合并所有网格的PLY点云"""
|
||||
self.logger.info("开始合并PLY点云")
|
||||
merger = MergePly(self.config.output_dir)
|
||||
merger.merge_grid_laz(grid_points)
|
||||
|
||||
def merge_obj(self, grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
|
||||
"""合并所有网格的OBJ模型"""
|
||||
self.logger.info("开始合并OBJ模型")
|
||||
merger = MergeObj(self.config.output_dir)
|
||||
merger.merge_grid_obj(grid_points, translations)
|
||||
|
||||
def process(self):
|
||||
"""执行完整的预处理流程"""
|
||||
try:
|
||||
self.extract_gps()
|
||||
self.cluster()
|
||||
# self.filter_time_group_overlap()
|
||||
self.filter_points()
|
||||
grid_points, translations = self.divide_grids()
|
||||
# self.copy_images(grid_points)
|
||||
self.logger.info("预处理任务完成")
|
||||
|
||||
# self.odm_monitor.process_all_grids(grid_points)
|
||||
# self.merge_tif(grid_points)
|
||||
# self.merge_ply(grid_points)
|
||||
self.merge_obj(grid_points, translations)
|
||||
except Exception as e:
|
||||
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
|
||||
raise
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 创建配置
|
||||
config = PreprocessConfig(
|
||||
image_dir=r"E:\datasets\UAV\1009\project\images",
|
||||
output_dir=r"G:\ODM_output\1009",
|
||||
|
||||
cluster_eps=0.01,
|
||||
cluster_min_samples=5,
|
||||
|
||||
# 添加时间组重叠过滤参数
|
||||
time_group_overlap_threshold=0.7,
|
||||
time_group_interval=timedelta(minutes=5),
|
||||
|
||||
filter_distance_threshold=0.001,
|
||||
filter_min_neighbors=6,
|
||||
|
||||
filter_grid_size=0.001,
|
||||
filter_dense_distance_threshold=10,
|
||||
filter_time_threshold=timedelta(minutes=5),
|
||||
|
||||
grid_size=500,
|
||||
grid_overlap=0.1,
|
||||
|
||||
|
||||
mode="重建模式",
|
||||
)
|
||||
|
||||
# 创建处理器并执行
|
||||
processor = ImagePreprocessor(config)
|
||||
processor.process()
|
@ -11,32 +11,30 @@ class MergePly:
|
||||
self.output_dir = output_dir
|
||||
self.logger = logging.getLogger('UAV_Preprocess.MergePly')
|
||||
|
||||
def merge_grid_laz(self, grid_points: Dict[tuple, list]):
|
||||
"""合并所有网格的点云"""
|
||||
self.logger.info("开始合并所有网格的laz点云")
|
||||
|
||||
if len(grid_points) < 2:
|
||||
def merge_grid_laz(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||||
"""合并所有网格的点云数据"""
|
||||
if len(grid_points) == 1:
|
||||
self.logger.info("只有一个网格,无需合并")
|
||||
return
|
||||
|
||||
try:
|
||||
laz_lt = []
|
||||
# 获取所有点云文件路径
|
||||
laz_files = []
|
||||
for grid_id, points in grid_points.items():
|
||||
grid_laz = os.path.join(
|
||||
laz_path = os.path.join(
|
||||
self.output_dir,
|
||||
f"grid_{grid_id[0]}_{grid_id[1]}",
|
||||
"project",
|
||||
"odm_georeferencing",
|
||||
"odm_georeferenced_model.laz"
|
||||
)
|
||||
|
||||
if not os.path.exists(grid_laz):
|
||||
self.logger.warning(f"网格 ({grid_id[0]},{grid_id[1]}) 的laz文件不存在: {grid_laz}")
|
||||
continue
|
||||
laz_lt.append(grid_laz)
|
||||
if os.path.exists(laz_path):
|
||||
laz_files.append(laz_path)
|
||||
else:
|
||||
self.logger.warning(f"网格 ({grid_id[0]},{grid_id[1]}) 的点云文件不存在")
|
||||
|
||||
kwargs = {
|
||||
'all_inputs': " ".join(laz_lt),
|
||||
'all_inputs': " ".join(laz_files),
|
||||
'output': os.path.join(self.output_dir, 'merged_pointcloud.laz')
|
||||
}
|
||||
|
||||
|
@ -104,7 +104,7 @@ class MergeObj:
|
||||
"""平移顶点"""
|
||||
return [[v[0] + translation[0], v[1] + translation[1], v[2] + translation[2]] for v in vertices]
|
||||
|
||||
def merge_two_objs(self, obj1_path: str, obj2_path: str, output_path: str, translation):
|
||||
def merge_two_objs(self, obj1_path: str, obj2_path: str, output_path: str, translation, grid_id1: tuple, grid_id2: tuple):
|
||||
"""合并两个OBJ文件"""
|
||||
try:
|
||||
self.logger.info(f"开始合并OBJ模型:\n输入1: {obj1_path}\n输入2: {obj2_path}")
|
||||
@ -124,8 +124,8 @@ class MergeObj:
|
||||
materials2 = self.read_mtl(mtl2_path)
|
||||
|
||||
# 创建材质名称映射(使用与MTL文件相同的命名格式)
|
||||
material_map1 = {old_name: f"material_0_0_{old_name}" for old_name in materials1.keys()}
|
||||
material_map2 = {old_name: f"material_0_1_{old_name}" for old_name in materials2.keys()}
|
||||
material_map1 = {old_name: f"material_{grid_id1[0]}_{grid_id1[1]}_{old_name}" for old_name in materials1.keys()}
|
||||
material_map2 = {old_name: f"material_{grid_id2[0]}_{grid_id2[1]}_{old_name}" for old_name in materials2.keys()}
|
||||
|
||||
# 平移第二个模型的顶点
|
||||
vertices2_translated = self.translate_vertices(vertices2, translation)
|
||||
@ -249,6 +249,10 @@ class MergeObj:
|
||||
|
||||
def merge_grid_obj(self, grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
|
||||
"""合并所有网格的OBJ模型"""
|
||||
if len(grid_points) == 1:
|
||||
self.logger.info("只有一个网格,无需合并")
|
||||
return
|
||||
|
||||
try:
|
||||
# 创建输出目录
|
||||
output_model_dir = os.path.join(self.output_dir, "merged_model")
|
||||
@ -321,7 +325,7 @@ class MergeObj:
|
||||
f"merged_model_{reference_id[0]}_{reference_id[1]}_{grid_id[0]}_{grid_id[1]}.obj"
|
||||
)
|
||||
|
||||
self.merge_two_objs(merged_obj, files['obj'], output_obj, translation)
|
||||
self.merge_two_objs(merged_obj, files['obj'], output_obj, translation, reference_id, grid_id)
|
||||
merged_obj = output_obj
|
||||
|
||||
# 最终结果
|
||||
|
@ -6,4 +6,3 @@ piexif
|
||||
geopy
|
||||
psutil
|
||||
docker>=6.1.3
|
||||
open3d
|
||||
|
@ -52,12 +52,12 @@ class GridDivider:
|
||||
grid_min_lon = min_lon + j * lon_step - self.overlap * lon_step
|
||||
grid_max_lon = min_lon + (j + 1) * lon_step + self.overlap * lon_step
|
||||
|
||||
grid_id = (j, i) # 使用(width_idx, height_idx)元组作为网格标识
|
||||
grid_id = (i, j) # 使用(i,j)作为网格标识,i代表行,j代表列
|
||||
grid_bounds = (grid_min_lat, grid_max_lat, grid_min_lon, grid_max_lon)
|
||||
grids.append(grid_bounds)
|
||||
|
||||
self.logger.debug(
|
||||
f"网格[{j},{i}]: 纬度[{grid_min_lat:.6f}, {grid_max_lat:.6f}], "
|
||||
f"网格[{i},{j}]: 纬度[{grid_min_lat:.6f}, {grid_max_lat:.6f}], "
|
||||
f"经度[{grid_min_lon:.6f}, {grid_max_lon:.6f}]"
|
||||
)
|
||||
|
||||
@ -65,7 +65,7 @@ class GridDivider:
|
||||
reference_grid = grids[0]
|
||||
for i in range(self.num_grids_height):
|
||||
for j in range(self.num_grids_width):
|
||||
grid_id = (j, i)
|
||||
grid_id = (i, j)
|
||||
grid_idx = i * self.num_grids_width + j
|
||||
if grid_idx == 0: # 参考网格
|
||||
grid_translations[grid_id] = (0, 0)
|
||||
@ -73,7 +73,7 @@ class GridDivider:
|
||||
translation = self.calculate_grid_translation(reference_grid, grids[grid_idx])
|
||||
grid_translations[grid_id] = translation
|
||||
self.logger.debug(
|
||||
f"网格[{j},{i}]相对于参考网格的平移量: x={translation[0]:.2f}m, y={translation[1]:.2f}m"
|
||||
f"网格[{i},{j}]相对于参考网格的平移量: x={translation[0]:.2f}m, y={translation[1]:.2f}m"
|
||||
)
|
||||
|
||||
self.logger.info(
|
||||
@ -95,7 +95,7 @@ class GridDivider:
|
||||
|
||||
for i in range(self.num_grids_height):
|
||||
for j in range(self.num_grids_width):
|
||||
grid_points[(j, i)] = [] # 使用(width_idx, height_idx)元组
|
||||
grid_points[(i, j)] = [] # 使用(i,j)元组
|
||||
|
||||
for _, point in points_df.iterrows():
|
||||
point_assigned = False
|
||||
@ -105,7 +105,7 @@ class GridDivider:
|
||||
min_lat, max_lat, min_lon, max_lon = grids[grid_idx]
|
||||
|
||||
if min_lat <= point['lat'] <= max_lat and min_lon <= point['lon'] <= max_lon:
|
||||
grid_points[(j, i)].append(point.to_dict())
|
||||
grid_points[(i, j)].append(point.to_dict())
|
||||
if point_assigned:
|
||||
multiple_grid_points += 1
|
||||
else:
|
||||
@ -146,7 +146,7 @@ class GridDivider:
|
||||
# 在网格中心添加网格编号
|
||||
center_lon = (min_lon + max_lon) / 2
|
||||
center_lat = (min_lat + max_lat) / 2
|
||||
plt.text(center_lon, center_lat, f"({j},{i})", # 显示(width_idx, height_idx)
|
||||
plt.text(center_lon, center_lat, f"({i},{j})", # 显示(i,j)
|
||||
horizontalalignment='center', verticalalignment='center')
|
||||
|
||||
plt.title('网格划分与GPS点分布图')
|
||||
|
Loading…
Reference in New Issue
Block a user