调整网格id

This commit is contained in:
龙澳 2025-01-02 17:21:23 +08:00
parent bfc45b4d27
commit 076282780f
6 changed files with 31 additions and 333 deletions

View File

@ -223,7 +223,10 @@ class ImagePreprocessor:
for grid_id, points in grid_points.items():
output_dir = os.path.join(
self.config.output_dir, f"grid_{grid_id[0]}_{grid_id[1]}", "project", "images"
self.config.output_dir,
f"grid_{grid_id[0]}_{grid_id[1]}",
"project",
"images"
)
os.makedirs(output_dir, exist_ok=True)
@ -232,8 +235,7 @@ class ImagePreprocessor:
src = os.path.join(self.config.image_dir, point["file"])
dst = os.path.join(output_dir, point["file"])
shutil.copy(src, dst)
self.logger.info(
f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像")
self.logger.info(f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像")
def merge_tif(self, grid_points: Dict[tuple, pd.DataFrame]):
"""合并所有网格的影像产品"""

View File

@ -1,305 +0,0 @@
import os
import shutil
from datetime import timedelta
from dataclasses import dataclass
from typing import Dict, Tuple
import matplotlib.pyplot as plt
import pandas as pd
from tqdm import tqdm
from filter.cluster_filter import GPSCluster
from filter.time_group_overlap_filter import TimeGroupOverlapFilter
from filter.gps_filter import GPSFilter
from utils.odm_monitor import ODMProcessMonitor
from utils.gps_extractor import GPSExtractor
from utils.grid_divider import GridDivider
from utils.logger import setup_logger
from utils.visualizer import FilterVisualizer
from post_pro.merge_tif import MergeTif
from tools.test_docker_run import run_docker_command
from post_pro.merge_obj import MergeObj
from post_pro.merge_laz import MergePly
@dataclass
class PreprocessConfig:
"""预处理配置类"""
image_dir: str
output_dir: str
# 聚类过滤参数
cluster_eps: float = 0.01
cluster_min_samples: int = 5
# 时间组重叠过滤参数
time_group_overlap_threshold: float = 0.7
time_group_interval: timedelta = timedelta(minutes=5)
# 孤立点过滤参数
filter_distance_threshold: float = 0.001 # 经纬度距离
filter_min_neighbors: int = 6
# 密集点过滤参数
filter_grid_size: float = 0.001
filter_dense_distance_threshold: float = 10 # 普通距离,单位:米
filter_time_threshold: timedelta = timedelta(minutes=5)
# 网格划分参数
grid_overlap: float = 0.05
grid_size: float = 500
# 几个pipline过程是否开启
mode: str = "快拼模式"
class ImagePreprocessor:
def __init__(self, config: PreprocessConfig):
self.config = config
# # 清理并重建输出目录
# if os.path.exists(config.output_dir):
# self._clean_output_dir()
# self._setup_output_dirs()
# 初始化其他组件
self.logger = setup_logger(config.output_dir)
self.gps_points = None
self.odm_monitor = ODMProcessMonitor(
config.output_dir, mode=config.mode)
self.visualizer = FilterVisualizer(config.output_dir)
def _clean_output_dir(self):
"""清理输出目录"""
try:
shutil.rmtree(self.config.output_dir)
print(f"已清理输出目录: {self.config.output_dir}")
except Exception as e:
print(f"清理输出目录时发生错误: {str(e)}")
raise
def _setup_output_dirs(self):
"""创建必要的输出目录结构"""
try:
# 创建主输出目录
os.makedirs(self.config.output_dir)
# 创建过滤图像保存目录
os.makedirs(os.path.join(self.config.output_dir, 'filter_imgs'))
# 创建日志目录
os.makedirs(os.path.join(self.config.output_dir, 'logs'))
print(f"已创建输出目录结构: {self.config.output_dir}")
except Exception as e:
print(f"创建输出目录时发生错误: {str(e)}")
raise
def extract_gps(self) -> pd.DataFrame:
"""提取GPS数据"""
self.logger.info("开始提取GPS数据")
extractor = GPSExtractor(self.config.image_dir)
self.gps_points = extractor.extract_all_gps()
self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点")
return self.gps_points
def cluster(self) -> pd.DataFrame:
"""使用DBSCAN对GPS点进行聚类只保留最大的类"""
self.logger.info("开始聚类")
previous_points = self.gps_points.copy()
# 创建聚类器并执行聚类
clusterer = GPSCluster(
self.gps_points, output_dir=self.config.output_dir,
eps=self.config.cluster_eps, min_samples=self.config.cluster_min_samples)
# 获取主要类别的点
self.clustered_points = clusterer.fit()
self.gps_points = clusterer.get_main_cluster(self.clustered_points)
# 获取统计信息并记录
stats = clusterer.get_cluster_stats(self.clustered_points)
self.logger.info(
f"聚类完成:主要类别包含 {stats['main_cluster_points']} 个点,"
f"噪声点 {stats['noise_points']}"
)
# 可视化聚类结果
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "1-Clustering")
return self.gps_points
def filter_time_group_overlap(self) -> pd.DataFrame:
"""过滤重叠的时间组"""
self.logger.info("开始过滤重叠时间组")
self.logger.info("开始过滤重叠时间组")
previous_points = self.gps_points.copy()
filter = TimeGroupOverlapFilter(
self.config.image_dir,
self.config.output_dir,
overlap_threshold=self.config.time_group_overlap_threshold
)
deleted_files = filter.filter_overlapping_groups(
time_threshold=self.config.time_group_interval
)
# 更新GPS点数据移除被删除的图像
self.gps_points = self.gps_points[~self.gps_points['file'].isin(
deleted_files)]
self.logger.info(f"重叠时间组过滤后剩余 {len(self.gps_points)} 个GPS点")
# 可视化过滤结果
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "2-Time Group Overlap")
return self.gps_points
# TODO 过滤算法还需要更新
def filter_points(self) -> pd.DataFrame:
"""过滤GPS点"""
self.logger.info("开始过滤GPS点")
filter = GPSFilter(self.config.output_dir)
# 过滤孤立点
previous_points = self.gps_points.copy()
self.logger.info(
f"开始过滤孤立点(距离阈值: {self.config.filter_distance_threshold}, "
f"最小邻居数: {self.config.filter_min_neighbors})"
)
self.gps_points = filter.filter_isolated_points(
self.gps_points,
self.config.filter_distance_threshold,
self.config.filter_min_neighbors,
)
self.logger.info(f"孤立点过滤后剩余 {len(self.gps_points)} 个GPS点")
# 可视化孤立点过滤结果
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "3-Isolated Points")
# # 过滤密集点
# previous_points = self.gps_points.copy()
# self.logger.info(
# f"开始过滤密集点(网格大小: {self.config.filter_grid_size}, "
# f"距离阈值: {self.config.filter_dense_distance_threshold})"
# )
# self.gps_points = filter.filter_dense_points(
# self.gps_points,
# grid_size=self.config.filter_grid_size,
# distance_threshold=self.config.filter_dense_distance_threshold,
# time_threshold=self.config.filter_time_threshold,
# )
# self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
# # 可视化密集点过滤结果
# self.visualizer.visualize_filter_step(
# self.gps_points, previous_points, "4-Dense Points")
return self.gps_points
def divide_grids(self) -> Tuple[Dict[tuple, pd.DataFrame], Dict[tuple, tuple]]:
"""划分网格
Returns:
tuple: (grid_points, translations)
- grid_points: 网格点数据字典
- translations: 网格平移量字典
"""
self.logger.info(f"开始划分网格 (重叠率: {self.config.grid_overlap})")
grid_divider = GridDivider(
overlap=self.config.grid_overlap,
output_dir=self.config.output_dir
)
grids, translations = grid_divider.divide_grids(
self.gps_points, grid_size=self.config.grid_size
)
grid_points = grid_divider.assign_to_grids(self.gps_points, grids)
self.logger.info(f"成功划分为 {len(grid_points)} 个网格")
return grid_points, translations
def copy_images(self, grid_points: Dict[tuple, pd.DataFrame]):
"""复制图像到目标文件夹"""
self.logger.info("开始复制图像文件")
for grid_id, points in grid_points.items():
output_dir = os.path.join(
self.config.output_dir, f"grid_{grid_id[0]}_{grid_id[1]}", "project", "images"
)
os.makedirs(output_dir, exist_ok=True)
for point in tqdm(points, desc=f"复制网格 ({grid_id[0]},{grid_id[1]}) 的图像"):
src = os.path.join(self.config.image_dir, point["file"])
dst = os.path.join(output_dir, point["file"])
shutil.copy(src, dst)
self.logger.info(
f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像")
def merge_tif(self, grid_points: Dict[tuple, pd.DataFrame]):
"""合并所有网格的影像产品"""
self.logger.info("开始合并所有影像产品")
merger = MergeTif(self.config.output_dir)
merger.merge_all_tifs(grid_points)
def merge_ply(self, grid_points: Dict[tuple, pd.DataFrame]):
"""合并所有网格的PLY点云"""
self.logger.info("开始合并PLY点云")
merger = MergePly(self.config.output_dir)
merger.merge_grid_laz(grid_points)
def merge_obj(self, grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
"""合并所有网格的OBJ模型"""
self.logger.info("开始合并OBJ模型")
merger = MergeObj(self.config.output_dir)
merger.merge_grid_obj(grid_points, translations)
def process(self):
"""执行完整的预处理流程"""
try:
self.extract_gps()
self.cluster()
# self.filter_time_group_overlap()
self.filter_points()
grid_points, translations = self.divide_grids()
# self.copy_images(grid_points)
self.logger.info("预处理任务完成")
# self.odm_monitor.process_all_grids(grid_points)
# self.merge_tif(grid_points)
# self.merge_ply(grid_points)
self.merge_obj(grid_points, translations)
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)
raise
if __name__ == "__main__":
# 创建配置
config = PreprocessConfig(
image_dir=r"E:\datasets\UAV\1009\project\images",
output_dir=r"G:\ODM_output\1009",
cluster_eps=0.01,
cluster_min_samples=5,
# 添加时间组重叠过滤参数
time_group_overlap_threshold=0.7,
time_group_interval=timedelta(minutes=5),
filter_distance_threshold=0.001,
filter_min_neighbors=6,
filter_grid_size=0.001,
filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5),
grid_size=500,
grid_overlap=0.1,
mode="重建模式",
)
# 创建处理器并执行
processor = ImagePreprocessor(config)
processor.process()

View File

@ -11,32 +11,30 @@ class MergePly:
self.output_dir = output_dir
self.logger = logging.getLogger('UAV_Preprocess.MergePly')
def merge_grid_laz(self, grid_points: Dict[tuple, list]):
"""合并所有网格的点云"""
self.logger.info("开始合并所有网格的laz点云")
if len(grid_points) < 2:
def merge_grid_laz(self, grid_points: Dict[tuple, pd.DataFrame]):
"""合并所有网格的点云数据"""
if len(grid_points) == 1:
self.logger.info("只有一个网格,无需合并")
return
try:
laz_lt = []
# 获取所有点云文件路径
laz_files = []
for grid_id, points in grid_points.items():
grid_laz = os.path.join(
laz_path = os.path.join(
self.output_dir,
f"grid_{grid_id[0]}_{grid_id[1]}",
"project",
"odm_georeferencing",
"odm_georeferenced_model.laz"
)
if not os.path.exists(grid_laz):
self.logger.warning(f"网格 ({grid_id[0]},{grid_id[1]}) 的laz文件不存在: {grid_laz}")
continue
laz_lt.append(grid_laz)
if os.path.exists(laz_path):
laz_files.append(laz_path)
else:
self.logger.warning(f"网格 ({grid_id[0]},{grid_id[1]}) 的点云文件不存在")
kwargs = {
'all_inputs': " ".join(laz_lt),
'all_inputs': " ".join(laz_files),
'output': os.path.join(self.output_dir, 'merged_pointcloud.laz')
}

View File

@ -104,7 +104,7 @@ class MergeObj:
"""平移顶点"""
return [[v[0] + translation[0], v[1] + translation[1], v[2] + translation[2]] for v in vertices]
def merge_two_objs(self, obj1_path: str, obj2_path: str, output_path: str, translation):
def merge_two_objs(self, obj1_path: str, obj2_path: str, output_path: str, translation, grid_id1: tuple, grid_id2: tuple):
"""合并两个OBJ文件"""
try:
self.logger.info(f"开始合并OBJ模型:\n输入1: {obj1_path}\n输入2: {obj2_path}")
@ -124,8 +124,8 @@ class MergeObj:
materials2 = self.read_mtl(mtl2_path)
# 创建材质名称映射使用与MTL文件相同的命名格式
material_map1 = {old_name: f"material_0_0_{old_name}" for old_name in materials1.keys()}
material_map2 = {old_name: f"material_0_1_{old_name}" for old_name in materials2.keys()}
material_map1 = {old_name: f"material_{grid_id1[0]}_{grid_id1[1]}_{old_name}" for old_name in materials1.keys()}
material_map2 = {old_name: f"material_{grid_id2[0]}_{grid_id2[1]}_{old_name}" for old_name in materials2.keys()}
# 平移第二个模型的顶点
vertices2_translated = self.translate_vertices(vertices2, translation)
@ -249,6 +249,10 @@ class MergeObj:
def merge_grid_obj(self, grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
"""合并所有网格的OBJ模型"""
if len(grid_points) == 1:
self.logger.info("只有一个网格,无需合并")
return
try:
# 创建输出目录
output_model_dir = os.path.join(self.output_dir, "merged_model")
@ -321,7 +325,7 @@ class MergeObj:
f"merged_model_{reference_id[0]}_{reference_id[1]}_{grid_id[0]}_{grid_id[1]}.obj"
)
self.merge_two_objs(merged_obj, files['obj'], output_obj, translation)
self.merge_two_objs(merged_obj, files['obj'], output_obj, translation, reference_id, grid_id)
merged_obj = output_obj
# 最终结果

View File

@ -6,4 +6,3 @@ piexif
geopy
psutil
docker>=6.1.3
open3d

View File

@ -52,12 +52,12 @@ class GridDivider:
grid_min_lon = min_lon + j * lon_step - self.overlap * lon_step
grid_max_lon = min_lon + (j + 1) * lon_step + self.overlap * lon_step
grid_id = (j, i) # 使用(width_idx, height_idx)元组作为网格标识
grid_id = (i, j) # 使用(i,j)作为网格标识i代表行j代表列
grid_bounds = (grid_min_lat, grid_max_lat, grid_min_lon, grid_max_lon)
grids.append(grid_bounds)
self.logger.debug(
f"网格[{j},{i}]: 纬度[{grid_min_lat:.6f}, {grid_max_lat:.6f}], "
f"网格[{i},{j}]: 纬度[{grid_min_lat:.6f}, {grid_max_lat:.6f}], "
f"经度[{grid_min_lon:.6f}, {grid_max_lon:.6f}]"
)
@ -65,7 +65,7 @@ class GridDivider:
reference_grid = grids[0]
for i in range(self.num_grids_height):
for j in range(self.num_grids_width):
grid_id = (j, i)
grid_id = (i, j)
grid_idx = i * self.num_grids_width + j
if grid_idx == 0: # 参考网格
grid_translations[grid_id] = (0, 0)
@ -73,7 +73,7 @@ class GridDivider:
translation = self.calculate_grid_translation(reference_grid, grids[grid_idx])
grid_translations[grid_id] = translation
self.logger.debug(
f"网格[{j},{i}]相对于参考网格的平移量: x={translation[0]:.2f}m, y={translation[1]:.2f}m"
f"网格[{i},{j}]相对于参考网格的平移量: x={translation[0]:.2f}m, y={translation[1]:.2f}m"
)
self.logger.info(
@ -95,7 +95,7 @@ class GridDivider:
for i in range(self.num_grids_height):
for j in range(self.num_grids_width):
grid_points[(j, i)] = [] # 使用(width_idx, height_idx)元组
grid_points[(i, j)] = [] # 使用(i,j)元组
for _, point in points_df.iterrows():
point_assigned = False
@ -105,7 +105,7 @@ class GridDivider:
min_lat, max_lat, min_lon, max_lon = grids[grid_idx]
if min_lat <= point['lat'] <= max_lat and min_lon <= point['lon'] <= max_lon:
grid_points[(j, i)].append(point.to_dict())
grid_points[(i, j)].append(point.to_dict())
if point_assigned:
multiple_grid_points += 1
else:
@ -146,7 +146,7 @@ class GridDivider:
# 在网格中心添加网格编号
center_lon = (min_lon + max_lon) / 2
center_lat = (min_lat + max_lat) / 2
plt.text(center_lon, center_lat, f"({j},{i})", # 显示(width_idx, height_idx)
plt.text(center_lon, center_lat, f"({i},{j})", # 显示(i,j)
horizontalalignment='center', verticalalignment='center')
plt.title('网格划分与GPS点分布图')