小修bug
This commit is contained in:
parent
076282780f
commit
38db33b2c0
@ -46,6 +46,7 @@ class PreprocessConfig:
|
||||
grid_size: float = 500
|
||||
# 几个pipline过程是否开启
|
||||
mode: str = "快拼模式"
|
||||
produce_dem: bool = False
|
||||
|
||||
|
||||
class ImagePreprocessor:
|
||||
@ -237,11 +238,11 @@ class ImagePreprocessor:
|
||||
shutil.copy(src, dst)
|
||||
self.logger.info(f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像")
|
||||
|
||||
def merge_tif(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||||
def merge_tif(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool):
|
||||
"""合并所有网格的影像产品"""
|
||||
self.logger.info("开始合并所有影像产品")
|
||||
merger = MergeTif(self.config.output_dir)
|
||||
merger.merge_all_tifs(grid_points)
|
||||
merger.merge_all_tifs(grid_points, produce_dem)
|
||||
|
||||
def merge_ply(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||||
"""合并所有网格的PLY点云"""
|
||||
@ -266,8 +267,8 @@ class ImagePreprocessor:
|
||||
self.copy_images(grid_points)
|
||||
self.logger.info("预处理任务完成")
|
||||
|
||||
self.odm_monitor.process_all_grids(grid_points)
|
||||
self.merge_tif(grid_points)
|
||||
self.odm_monitor.process_all_grids(grid_points, self.config.produce_dem)
|
||||
self.merge_tif(grid_points, self.config.produce_dem)
|
||||
self.merge_ply(grid_points)
|
||||
self.merge_obj(grid_points, translations)
|
||||
except Exception as e:
|
||||
@ -278,8 +279,8 @@ class ImagePreprocessor:
|
||||
if __name__ == "__main__":
|
||||
# 创建配置
|
||||
config = PreprocessConfig(
|
||||
image_dir=r"E:\datasets\UAV\1815\project\images",
|
||||
output_dir=r"G:\ODM_output\1815",
|
||||
image_dir=r"E:\datasets\UAV\283\project\images",
|
||||
output_dir=r"G:\ODM_output\283",
|
||||
|
||||
cluster_eps=0.01,
|
||||
cluster_min_samples=5,
|
||||
@ -295,11 +296,12 @@ if __name__ == "__main__":
|
||||
filter_dense_distance_threshold=10,
|
||||
filter_time_threshold=timedelta(minutes=5),
|
||||
|
||||
grid_size=500,
|
||||
grid_size=400,
|
||||
grid_overlap=0.1,
|
||||
|
||||
|
||||
mode="重建模式",
|
||||
produce_dem=False,
|
||||
)
|
||||
|
||||
# 创建处理器并执行
|
||||
|
@ -4,6 +4,7 @@ import numpy as np
|
||||
from typing import Dict
|
||||
import pandas as pd
|
||||
import shutil
|
||||
import time
|
||||
|
||||
|
||||
class MergeObj:
|
||||
@ -124,8 +125,23 @@ class MergeObj:
|
||||
materials2 = self.read_mtl(mtl2_path)
|
||||
|
||||
# 创建材质名称映射(使用与MTL文件相同的命名格式)
|
||||
material_map1 = {old_name: f"material_{grid_id1[0]}_{grid_id1[1]}_{old_name}" for old_name in materials1.keys()}
|
||||
material_map2 = {old_name: f"material_{grid_id2[0]}_{grid_id2[1]}_{old_name}" for old_name in materials2.keys()}
|
||||
material_map1 = {}
|
||||
material_map2 = {}
|
||||
|
||||
# 处理第一个模型的材质映射
|
||||
for old_name in materials1.keys():
|
||||
# 如果材质名称已经包含了网格ID前缀,就不再添加
|
||||
if old_name.startswith(f"material_{grid_id1[0]}_{grid_id1[1]}_"):
|
||||
material_map1[old_name] = old_name
|
||||
else:
|
||||
material_map1[old_name] = f"material_{grid_id1[0]}_{grid_id1[1]}_{old_name}"
|
||||
|
||||
# 处理第二个模型的材质映射
|
||||
for old_name in materials2.keys():
|
||||
if old_name.startswith(f"material_{grid_id2[0]}_{grid_id2[1]}_"):
|
||||
material_map2[old_name] = old_name
|
||||
else:
|
||||
material_map2[old_name] = f"material_{grid_id2[0]}_{grid_id2[1]}_{old_name}"
|
||||
|
||||
# 平移第二个模型的顶点
|
||||
vertices2_translated = self.translate_vertices(vertices2, translation)
|
||||
@ -315,24 +331,51 @@ class MergeObj:
|
||||
# 合并OBJ文件
|
||||
reference_id = list(grid_files.keys())[0]
|
||||
merged_obj = grid_files[reference_id]['obj']
|
||||
temp_files = [] # 记录所有中间文件
|
||||
|
||||
for grid_id, files in list(grid_files.items())[1:]:
|
||||
translation = translations[grid_id]
|
||||
translation = (translation[0], translation[1], 0)
|
||||
|
||||
output_obj = os.path.join(
|
||||
# 生成临时输出文件名
|
||||
temp_output = os.path.join(
|
||||
output_model_dir,
|
||||
f"merged_model_{reference_id[0]}_{reference_id[1]}_{grid_id[0]}_{grid_id[1]}.obj"
|
||||
f"temp_merged_{int(time.time())}.obj"
|
||||
)
|
||||
temp_files.append(temp_output) # 添加到临时文件列表
|
||||
|
||||
self.merge_two_objs(merged_obj, files['obj'], output_obj, translation, reference_id, grid_id)
|
||||
merged_obj = output_obj
|
||||
self.merge_two_objs(merged_obj, files['obj'], temp_output, translation, reference_id, grid_id)
|
||||
|
||||
# 如果上一个merged_obj是临时文件,则删除它
|
||||
if merged_obj != grid_files[reference_id]['obj'] and os.path.exists(merged_obj):
|
||||
try:
|
||||
os.remove(merged_obj)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"删除临时文件失败: {merged_obj}, 错误: {str(e)}")
|
||||
|
||||
merged_obj = temp_output
|
||||
|
||||
# 最终结果
|
||||
final_obj = os.path.join(output_model_dir, "merged_model.obj")
|
||||
if os.path.exists(merged_obj) and merged_obj != final_obj:
|
||||
try:
|
||||
if os.path.exists(final_obj):
|
||||
os.remove(final_obj)
|
||||
os.rename(merged_obj, final_obj)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"重命名最终文件失败: {str(e)}")
|
||||
shutil.copy2(merged_obj, final_obj)
|
||||
os.remove(merged_obj)
|
||||
try:
|
||||
os.remove(merged_obj)
|
||||
except:
|
||||
pass
|
||||
|
||||
# 清理所有临时文件
|
||||
for temp_file in temp_files:
|
||||
if os.path.exists(temp_file):
|
||||
try:
|
||||
os.remove(temp_file)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"删除临时文件失败: {temp_file}, 错误: {str(e)}")
|
||||
|
||||
self.logger.info(
|
||||
f"模型合并完成,输出目录: {output_model_dir}\n"
|
||||
|
@ -3,6 +3,8 @@ import logging
|
||||
import os
|
||||
from typing import Dict
|
||||
import pandas as pd
|
||||
import time
|
||||
import shutil
|
||||
|
||||
|
||||
class MergeTif:
|
||||
@ -25,49 +27,72 @@ class MergeTif:
|
||||
raise FileNotFoundError(error_msg)
|
||||
|
||||
# 打开影像,检查投影是否一致
|
||||
datasets = [gdal.Open(tif) for tif in [input_tif1, input_tif2]]
|
||||
if None in datasets:
|
||||
error_msg = "无法打开输入影像文件"
|
||||
self.logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
datasets = []
|
||||
try:
|
||||
for tif in [input_tif1, input_tif2]:
|
||||
ds = gdal.Open(tif)
|
||||
if ds is None:
|
||||
error_msg = f"无法打开影像文件: {tif}"
|
||||
self.logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
datasets.append(ds)
|
||||
|
||||
projections = [dataset.GetProjection() for dataset in datasets]
|
||||
self.logger.debug(f"影像1投影: {projections[0]}")
|
||||
self.logger.debug(f"影像2投影: {projections[1]}")
|
||||
projections = [ds.GetProjection() for ds in datasets]
|
||||
self.logger.debug(f"影像1投影: {projections[0]}")
|
||||
self.logger.debug(f"影像2投影: {projections[1]}")
|
||||
|
||||
# 检查投影是否一致
|
||||
if len(set(projections)) != 1:
|
||||
error_msg = "影像的投影不一致,请先进行重投影!"
|
||||
self.logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
# 检查投影是否一致
|
||||
if len(set(projections)) != 1:
|
||||
error_msg = "影像的投影不一致,请先进行重投影!"
|
||||
self.logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
# 创建 GDAL Warp 选项
|
||||
warp_options = gdal.WarpOptions(
|
||||
format="GTiff",
|
||||
resampleAlg="average",
|
||||
srcNodata=0,
|
||||
dstNodata=0,
|
||||
multithread=True
|
||||
)
|
||||
# 如果输出文件已存在,先删除
|
||||
if os.path.exists(output_tif):
|
||||
try:
|
||||
os.remove(output_tif)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"删除已存在的输出文件失败: {str(e)}")
|
||||
# 生成一个新的输出文件名
|
||||
base, ext = os.path.splitext(output_tif)
|
||||
output_tif = f"{base}_{int(time.time())}{ext}"
|
||||
self.logger.info(f"使用新的输出文件名: {output_tif}")
|
||||
|
||||
self.logger.info("开始执行影像拼接...")
|
||||
result = gdal.Warp(
|
||||
output_tif, [input_tif1, input_tif2], options=warp_options)
|
||||
# 创建 GDAL Warp 选项
|
||||
warp_options = gdal.WarpOptions(
|
||||
format="GTiff",
|
||||
resampleAlg="average",
|
||||
srcNodata=0,
|
||||
dstNodata=0,
|
||||
multithread=True
|
||||
)
|
||||
|
||||
if result is None:
|
||||
error_msg = "影像拼接失败"
|
||||
self.logger.error(error_msg)
|
||||
raise RuntimeError(error_msg)
|
||||
self.logger.info("开始执行影像拼接...")
|
||||
result = gdal.Warp(output_tif, datasets, options=warp_options)
|
||||
|
||||
# 获取输出影像的基本信息
|
||||
output_dataset = gdal.Open(output_tif)
|
||||
if output_dataset:
|
||||
width = output_dataset.RasterXSize
|
||||
height = output_dataset.RasterYSize
|
||||
bands = output_dataset.RasterCount
|
||||
self.logger.info(f"拼接完成,输出影像大小: {width}x{height},波段数: {bands}")
|
||||
if result is None:
|
||||
error_msg = "影像拼接失败"
|
||||
self.logger.error(error_msg)
|
||||
raise RuntimeError(error_msg)
|
||||
|
||||
self.logger.info(f"影像拼接成功,输出文件保存至: {output_tif}")
|
||||
# 获取输出影像的基本信息
|
||||
output_dataset = gdal.Open(output_tif)
|
||||
if output_dataset:
|
||||
width = output_dataset.RasterXSize
|
||||
height = output_dataset.RasterYSize
|
||||
bands = output_dataset.RasterCount
|
||||
self.logger.info(
|
||||
f"拼接完成,输出影像大小: {width}x{height},波段数: {bands}")
|
||||
output_dataset = None # 显式关闭数据集
|
||||
|
||||
self.logger.info(f"影像拼接成功,输出文件保存至: {output_tif}")
|
||||
|
||||
finally:
|
||||
# 确保所有数据集都被正确关闭
|
||||
for ds in datasets:
|
||||
if ds:
|
||||
ds = None
|
||||
result = None
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"影像拼接过程中发生错误: {str(e)}", exc_info=True)
|
||||
@ -108,25 +133,58 @@ class MergeTif:
|
||||
self.logger.info(f"设置第一个输入{product_name}: {input_tif1}")
|
||||
else:
|
||||
input_tif2 = grid_tif
|
||||
output_tif = os.path.join(
|
||||
self.output_dir, f"merged_{product_info['output']}")
|
||||
# 生成带时间戳的临时输出文件名
|
||||
temp_output = os.path.join(
|
||||
self.output_dir,
|
||||
f"temp_merged_{int(time.time())}_{product_info['output']}"
|
||||
)
|
||||
|
||||
self.logger.info(
|
||||
f"开始合并{product_name}第 {merge_count + 1} 次:\n"
|
||||
f"输入1: {input_tif1}\n"
|
||||
f"输入2: {input_tif2}\n"
|
||||
f"输出: {output_tif}"
|
||||
f"输出: {temp_output}"
|
||||
)
|
||||
|
||||
self.merge_two_tifs(input_tif1, input_tif2, output_tif)
|
||||
self.merge_two_tifs(input_tif1, input_tif2, temp_output)
|
||||
merge_count += 1
|
||||
|
||||
input_tif1 = output_tif
|
||||
# 如果之前的输入文件是临时文件,则删除它
|
||||
if 'temp_merged_' in input_tif1:
|
||||
try:
|
||||
os.remove(input_tif1)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"删除临时文件失败: {str(e)}")
|
||||
|
||||
input_tif1 = temp_output
|
||||
input_tif2 = None
|
||||
|
||||
# 重命名最终的临时文件为目标文件名
|
||||
final_output = os.path.join(
|
||||
self.output_dir, product_info['output'])
|
||||
if os.path.exists(final_output):
|
||||
try:
|
||||
os.remove(final_output)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"删除已存在的最终输出文件失败: {str(e)}")
|
||||
final_output = os.path.join(
|
||||
self.output_dir,
|
||||
f"merged_{int(time.time())}_{product_info['output']}"
|
||||
)
|
||||
|
||||
try:
|
||||
os.rename(input_tif1, final_output)
|
||||
except Exception as e:
|
||||
self.logger.warning(f"重命名最终文件失败: {str(e)}")
|
||||
shutil.copy2(input_tif1, final_output)
|
||||
try:
|
||||
os.remove(input_tif1)
|
||||
except:
|
||||
pass
|
||||
|
||||
self.logger.info(
|
||||
f"{product_name}合并完成,共执行 {merge_count} 次合并,"
|
||||
f"最终输出文件: {input_tif1}"
|
||||
f"最终输出文件: {final_output}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@ -134,7 +192,7 @@ class MergeTif:
|
||||
f"{product_name}合并过程中发生错误: {str(e)}", exc_info=True)
|
||||
raise
|
||||
|
||||
def merge_all_tifs(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||||
def merge_all_tifs(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool):
|
||||
"""合并所有产品(正射影像、DSM和DTM)"""
|
||||
try:
|
||||
products = [
|
||||
@ -144,19 +202,23 @@ class MergeTif:
|
||||
'filename': 'odm_orthophoto.original.tif',
|
||||
'output': 'orthophoto.tif'
|
||||
},
|
||||
{
|
||||
'name': 'DSM',
|
||||
'path': 'odm_dem',
|
||||
'filename': 'dsm.original.tif',
|
||||
'output': 'dsm.tif'
|
||||
},
|
||||
{
|
||||
'name': 'DTM',
|
||||
'path': 'odm_dem',
|
||||
'filename': 'dtm.original.tif',
|
||||
'output': 'dtm.tif'
|
||||
}
|
||||
|
||||
]
|
||||
if produce_dem:
|
||||
products.append(
|
||||
{
|
||||
'name': 'DSM',
|
||||
'path': 'odm_dem',
|
||||
'filename': 'dsm.original.tif',
|
||||
'output': 'dsm.tif'
|
||||
},
|
||||
{
|
||||
'name': 'DTM',
|
||||
'path': 'odm_dem',
|
||||
'filename': 'dtm.original.tif',
|
||||
'output': 'dtm.tif'
|
||||
}
|
||||
)
|
||||
|
||||
for product in products:
|
||||
self.merge_grid_tif(grid_points, product)
|
||||
@ -173,7 +235,7 @@ if __name__ == "__main__":
|
||||
os.path.dirname(os.path.abspath(__file__))))
|
||||
from utils.logger import setup_logger
|
||||
import pandas as pd
|
||||
|
||||
|
||||
# 设置输出目录和日志
|
||||
output_dir = r"G:\ODM_output\1009"
|
||||
setup_logger(output_dir)
|
||||
|
@ -149,9 +149,9 @@ class GridDivider:
|
||||
plt.text(center_lon, center_lat, f"({i},{j})", # 显示(i,j)
|
||||
horizontalalignment='center', verticalalignment='center')
|
||||
|
||||
plt.title('网格划分与GPS点分布图')
|
||||
plt.xlabel('经度')
|
||||
plt.ylabel('纬度')
|
||||
plt.title('Grid Division and GPS Point Distribution')
|
||||
plt.xlabel('Longitude')
|
||||
plt.ylabel('Latitude')
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
|
||||
|
@ -20,8 +20,12 @@ class ODMProcessMonitor:
|
||||
success_markers.append('odm_texturing')
|
||||
return all(os.path.exists(os.path.join(grid_dir, 'project', marker)) for marker in success_markers)
|
||||
|
||||
def run_odm_with_monitor(self, grid_dir: str, grid_id: tuple, fast_mode: bool = True) -> Tuple[bool, str]:
|
||||
def run_odm_with_monitor(self, grid_dir: str, grid_id: tuple, fast_mode: bool = True, produce_dem: bool = False) -> Tuple[bool, str]:
|
||||
"""运行ODM命令"""
|
||||
if produce_dem and fast_mode:
|
||||
self.logger.error("快拼模式下无法生成DEM,请调整生产参数")
|
||||
return False, "快拼模式下无法生成DEM,请调整生产参数"
|
||||
|
||||
self.logger.info(f"开始处理网格 ({grid_id[0]},{grid_id[1]})")
|
||||
|
||||
# 构建Docker命令
|
||||
@ -37,6 +41,12 @@ class ODMProcessMonitor:
|
||||
f"--orthophoto-resolution 10 "
|
||||
)
|
||||
|
||||
if produce_dem:
|
||||
docker_command += (
|
||||
f"--dsm "
|
||||
f"--dtm "
|
||||
)
|
||||
|
||||
if fast_mode:
|
||||
docker_command += (
|
||||
f"--fast-orthophoto "
|
||||
@ -60,7 +70,7 @@ class ODMProcessMonitor:
|
||||
self.logger.error(f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败")
|
||||
return False, f"网格 ({grid_id[0]},{grid_id[1]}) 处理失败"
|
||||
|
||||
def process_all_grids(self, grid_points: Dict[tuple, pd.DataFrame]):
|
||||
def process_all_grids(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool):
|
||||
"""处理所有网格"""
|
||||
self.logger.info("开始执行网格处理")
|
||||
for grid_id in grid_points.keys():
|
||||
@ -71,7 +81,8 @@ class ODMProcessMonitor:
|
||||
success, error_msg = self.run_odm_with_monitor(
|
||||
grid_dir=grid_dir,
|
||||
grid_id=grid_id,
|
||||
fast_mode=(self.mode == "快拼模式")
|
||||
fast_mode=(self.mode == "快拼模式"),
|
||||
produce_dem=produce_dem
|
||||
)
|
||||
|
||||
if not success:
|
||||
|
Loading…
Reference in New Issue
Block a user