diff --git a/odm_preprocess_fast.py b/odm_preprocess_fast.py new file mode 100644 index 0000000..7228537 --- /dev/null +++ b/odm_preprocess_fast.py @@ -0,0 +1,318 @@ +import os +import shutil +from datetime import timedelta +from dataclasses import dataclass +from typing import Dict, Tuple +import psutil + +import matplotlib.pyplot as plt +import pandas as pd +from tqdm import tqdm + +from filter.cluster_filter import GPSCluster +from filter.time_group_overlap_filter import TimeGroupOverlapFilter +from filter.gps_filter import GPSFilter +from utils.odm_monitor import ODMProcessMonitor +from utils.gps_extractor import GPSExtractor +from utils.grid_divider import GridDivider +from utils.logger import setup_logger +from utils.visualizer import FilterVisualizer +from post_pro.merge_tif import MergeTif +from post_pro.merge_obj import MergeObj +from post_pro.merge_laz import MergePly + + +@dataclass +class PreprocessConfig: + """预处理配置类""" + + image_dir: str + output_dir: str + # 聚类过滤参数 + cluster_eps: float = 0.01 + cluster_min_samples: int = 5 + # 时间组重叠过滤参数 + time_group_overlap_threshold: float = 0.7 + time_group_interval: timedelta = timedelta(minutes=5) + # 孤立点过滤参数 + filter_distance_threshold: float = 0.001 # 经纬度距离 + filter_min_neighbors: int = 6 + # 密集点过滤参数 + filter_grid_size: float = 0.001 + filter_dense_distance_threshold: float = 10 # 普通距离,单位:米 + filter_time_threshold: timedelta = timedelta(minutes=5) + # 网格划分参数 + grid_overlap: float = 0.05 + grid_size: float = 500 + # 几个pipline过程是否开启 + mode: str = "快拼模式" + produce_dem: bool = False + + +class ImagePreprocessor: + def __init__(self, config: PreprocessConfig): + self.config = config + + # 检查磁盘空间 + self._check_disk_space() + + # # 清理并重建输出目录 + # if os.path.exists(config.output_dir): + # self._clean_output_dir() + # self._setup_output_dirs() + + # 初始化其他组件 + self.logger = setup_logger(config.output_dir) + self.gps_points = None + self.odm_monitor = ODMProcessMonitor( + config.output_dir, mode=config.mode) + self.visualizer = FilterVisualizer(config.output_dir) + + def _clean_output_dir(self): + """清理输出目录""" + try: + shutil.rmtree(self.config.output_dir) + print(f"已清理输出目录: {self.config.output_dir}") + except Exception as e: + print(f"清理输出目录时发生错误: {str(e)}") + raise + + def _setup_output_dirs(self): + """创建必要的输出目录结构""" + try: + # 创建主输出目录 + os.makedirs(self.config.output_dir) + + # 创建过滤图像保存目录 + os.makedirs(os.path.join(self.config.output_dir, 'filter_imgs')) + + # 创建日志目录 + os.makedirs(os.path.join(self.config.output_dir, 'logs')) + + print(f"已创建输出目录结构: {self.config.output_dir}") + except Exception as e: + print(f"创建输出目录时发生错误: {str(e)}") + raise + + def _get_directory_size(self, path): + """获取目录的总大小(字节)""" + total_size = 0 + for dirpath, dirnames, filenames in os.walk(path): + for filename in filenames: + file_path = os.path.join(dirpath, filename) + try: + total_size += os.path.getsize(file_path) + except (OSError, FileNotFoundError): + continue + return total_size + + def _check_disk_space(self): + """检查磁盘空间是否足够""" + # 获取输入目录大小 + input_size = self._get_directory_size(self.config.image_dir) + + # 获取输出目录所在磁盘的剩余空间 + output_drive = os.path.splitdrive( + os.path.abspath(self.config.output_dir))[0] + if not output_drive: # 处理Linux/Unix路径 + output_drive = '/home' + + disk_usage = psutil.disk_usage(output_drive) + free_space = disk_usage.free + + # 计算所需空间(输入大小的1.5倍) + required_space = input_size * 12 + + if free_space < required_space: + error_msg = ( + f"磁盘空间不足!\n" + f"输入目录大小: {input_size / (1024**3):.2f} GB\n" + f"所需空间: {required_space / (1024**3):.2f} GB\n" + f"可用空间: {free_space / (1024**3):.2f} GB\n" + f"在驱动器 {output_drive}" + ) + raise RuntimeError(error_msg) + + def extract_gps(self) -> pd.DataFrame: + """提取GPS数据""" + self.logger.info("开始提取GPS数据") + extractor = GPSExtractor(self.config.image_dir) + self.gps_points = extractor.extract_all_gps() + self.logger.info(f"成功提取 {len(self.gps_points)} 个GPS点") + + def cluster(self): + """使用DBSCAN对GPS点进行聚类,只保留最大的类""" + previous_points = self.gps_points.copy() + clusterer = GPSCluster( + self.gps_points, + eps=self.config.cluster_eps, + min_samples=self.config.cluster_min_samples + ) + + self.clustered_points = clusterer.fit() + self.gps_points = clusterer.get_cluster_stats(self.clustered_points) + + self.visualizer.visualize_filter_step( + self.gps_points, previous_points, "1-Clustering") + + def filter_isolated_points(self): + """过滤孤立点""" + filter = GPSFilter(self.config.output_dir) + previous_points = self.gps_points.copy() + + self.gps_points = filter.filter_isolated_points( + self.gps_points, + self.config.filter_distance_threshold, + self.config.filter_min_neighbors, + ) + + self.visualizer.visualize_filter_step( + self.gps_points, previous_points, "2-Isolated Points") + + def filter_time_group_overlap(self): + """过滤重叠的时间组""" + previous_points = self.gps_points.copy() + + filter = TimeGroupOverlapFilter( + self.config.image_dir, + self.config.output_dir, + overlap_threshold=self.config.time_group_overlap_threshold + ) + + self.gps_points = filter.filter_overlapping_groups( + self.gps_points, + time_threshold=self.config.time_group_interval + ) + + self.visualizer.visualize_filter_step( + self.gps_points, previous_points, "3-Time Group Overlap") + + def divide_grids(self) -> Tuple[Dict[tuple, pd.DataFrame], Dict[tuple, tuple]]: + """划分网格 + Returns: + tuple: (grid_points, translations) + - grid_points: 网格点数据字典 + - translations: 网格平移量字典 + """ + grid_divider = GridDivider( + overlap=self.config.grid_overlap, + grid_size=self.config.grid_size, + output_dir=self.config.output_dir + ) + grids, translations, grid_points = grid_divider.adjust_grid_size_and_overlap( + self.gps_points + ) + grid_divider.visualize_grids(self.gps_points, grids) + + return grid_points, translations + + def copy_images(self, grid_points: Dict[tuple, pd.DataFrame]): + """复制图像到目标文件夹""" + self.logger.info("开始复制图像文件") + + for grid_id, points in grid_points.items(): + output_dir = os.path.join( + self.config.output_dir, + f"grid_{grid_id[0]}_{grid_id[1]}", + "project", + "images" + ) + + os.makedirs(output_dir, exist_ok=True) + + for point in tqdm(points, desc=f"复制网格 ({grid_id[0]},{grid_id[1]}) 的图像"): + src = os.path.join(self.config.image_dir, point["file"]) + dst = os.path.join(output_dir, point["file"]) + shutil.copy(src, dst) + self.logger.info( + f"网格 ({grid_id[0]},{grid_id[1]}) 包含 {len(points)} 张图像") + + def merge_tif(self, grid_points: Dict[tuple, pd.DataFrame], produce_dem: bool): + """合并所有网格的影像产品""" + self.logger.info("开始合并所有影像产品") + merger = MergeTif(self.config.output_dir) + merger.merge_all_tifs(grid_points, produce_dem) + + def merge_ply(self, grid_points: Dict[tuple, pd.DataFrame]): + """合并所有网格的PLY点云""" + self.logger.info("开始合并PLY点云") + merger = MergePly(self.config.output_dir) + merger.merge_grid_laz(grid_points) + + def merge_obj(self, grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]): + """合并所有网格的OBJ模型""" + self.logger.info("开始合并OBJ模型") + merger = MergeObj(self.config.output_dir) + merger.merge_grid_obj(grid_points, translations) + + def post_process(self, successful_grid_points: Dict[tuple, pd.DataFrame], grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]): + """后处理:合并或复制处理结果""" + if len(successful_grid_points) < len(grid_points): + self.logger.warning( + f"有 {len(grid_points) - len(successful_grid_points)} 个网格处理失败," + f"将只合并成功处理的 {len(successful_grid_points)} 个网格" + ) + + if self.config.mode == "快拼模式": + self.merge_tif(successful_grid_points, self.config.produce_dem) + elif self.config.mode == "三维模式": + self.merge_ply(successful_grid_points) + self.merge_obj(successful_grid_points, translations) + else: + self.merge_tif(successful_grid_points, self.config.produce_dem) + self.merge_ply(successful_grid_points) + self.merge_obj(successful_grid_points, translations) + + def process(self): + """执行完整的预处理流程""" + try: + self.extract_gps() + self.cluster() + self.filter_isolated_points() + self.filter_time_group_overlap() + grid_points, translations = self.divide_grids() + # self.copy_images(grid_points) + self.logger.info("预处理任务完成") + + # successful_grid_points = self.odm_monitor.process_all_grids( + # grid_points, self.config.produce_dem) + successful_grid_points = grid_points + self.post_process(successful_grid_points, + grid_points, translations) + + except Exception as e: + self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True) + raise + + +if __name__ == "__main__": + # 创建配置 + config = PreprocessConfig( + image_dir=r"E:\datasets\UAV\134\project\images", + output_dir=r"G:\ODM_output\134", + + cluster_eps=0.01, + cluster_min_samples=5, + + # 添加时间组重叠过滤参数 + time_group_overlap_threshold=0.7, + time_group_interval=timedelta(minutes=5), + + filter_distance_threshold=0.001, + filter_min_neighbors=6, + + filter_grid_size=0.001, + filter_dense_distance_threshold=10, + filter_time_threshold=timedelta(minutes=5), + + grid_size=800, + grid_overlap=0.05, + + + mode="快拼模式", + produce_dem=False, + ) + + # 创建处理器并执行 + processor = ImagePreprocessor(config) + processor.process() diff --git a/post_pro/merge_tif.py b/post_pro/merge_tif.py index 866eae6..e1e8b79 100644 --- a/post_pro/merge_tif.py +++ b/post_pro/merge_tif.py @@ -129,13 +129,13 @@ class MergeTif: file_size_mb = os.path.getsize( grid_tif) / (1024 * 1024) # 转换为MB if file_size_mb > 600: - file_name = file_name.replace(".original", "") + filename = filename.replace(".original", "") grid_tif = os.path.join( self.output_dir, f"grid_{grid_id[0]}_{grid_id[1]}", "project", product_path, - file_name + filename ) if input_tif1 is None: