修改轨迹图的坐标系

This commit is contained in:
weixin_46229132 2025-04-06 11:09:16 +08:00
parent b69a610dd2
commit 697660b5b3

View File

@ -3,6 +3,7 @@ import matplotlib.pyplot as plt
import pandas as pd import pandas as pd
import logging import logging
from typing import Optional from typing import Optional
from pyproj import Transformer
class FilterVisualizer: class FilterVisualizer:
@ -17,6 +18,25 @@ class FilterVisualizer:
""" """
self.output_dir = output_dir self.output_dir = output_dir
self.logger = logging.getLogger('UAV_Preprocess.Visualizer') self.logger = logging.getLogger('UAV_Preprocess.Visualizer')
# 创建坐标转换器
self.transformer = Transformer.from_crs(
"EPSG:4326", # WGS84经纬度坐标系
"EPSG:32649", # UTM49N
always_xy=True
)
def _convert_to_utm(self, lon: pd.Series, lat: pd.Series) -> tuple:
"""
将经纬度坐标转换为UTM坐标
Args:
lon: 经度序列
lat: 纬度序列
Returns:
tuple: (x坐标, y坐标)
"""
return self.transformer.transform(lon, lat)
def visualize_filter_step(self, def visualize_filter_step(self,
current_points: pd.DataFrame, current_points: pd.DataFrame,
@ -38,34 +58,40 @@ class FilterVisualizer:
filtered_files = set(previous_points['file']) - set(current_points['file']) filtered_files = set(previous_points['file']) - set(current_points['file'])
filtered_points = previous_points[previous_points['file'].isin(filtered_files)] filtered_points = previous_points[previous_points['file'].isin(filtered_files)]
# 转换坐标到UTM
current_x, current_y = self._convert_to_utm(current_points['lon'], current_points['lat'])
filtered_x, filtered_y = self._convert_to_utm(filtered_points['lon'], filtered_points['lat'])
# 创建图形 # 创建图形
plt.rcParams['font.sans-serif']=['SimHei']#黑体
plt.rcParams['axes.unicode_minus'] = False
plt.figure(figsize=(20, 16)) plt.figure(figsize=(20, 16))
# 绘制保留的点 # 绘制保留的点
plt.scatter(current_points['lon'], current_points['lat'], plt.scatter(current_x, current_y,
color='blue', label='Retained Points', color='blue', label='保留的点',
alpha=0.6, s=50) alpha=0.6, s=50)
# 绘制被过滤的点 # 绘制被过滤的点
if not filtered_points.empty: if not filtered_points.empty:
plt.scatter(filtered_points['lon'], filtered_points['lat'], plt.scatter(filtered_x, filtered_y,
color='red', marker='x', label='Filtered Points', color='red', marker='x', label='过滤的点',
alpha=0.6, s=100) alpha=0.6, s=100)
# 设置图形属性 # 设置图形属性
plt.title(f"GPS Points After {step_name}\n" plt.title(f"{step_name}后的GPS点\n"
f"(Filtered: {len(filtered_points)}, Retained: {len(current_points)})", f"(过滤: {len(filtered_points)}, 保留: {len(current_points)})",
fontsize=14) fontsize=14)
plt.xlabel("Longitude", fontsize=12) plt.xlabel("东向坐标 (米)", fontsize=12)
plt.ylabel("Latitude", fontsize=12) plt.ylabel("北向坐标 (米)", fontsize=12)
plt.grid(True) plt.grid(True)
# 添加统计信息 # 添加统计信息
stats_text = ( stats_text = (
f"Original Points: {len(previous_points)}\n" f"原始点数: {len(previous_points)}\n"
f"Filtered Points: {len(filtered_points)}\n" f"过滤点数: {len(filtered_points)}\n"
f"Remaining Points: {len(current_points)}\n" f"保留点数: {len(current_points)}\n"
f"Filter Rate: {len(filtered_points)/len(previous_points)*100:.1f}%" f"过滤率: {len(filtered_points)/len(previous_points)*100:.1f}%"
) )
plt.figtext(0.02, 0.02, stats_text, fontsize=10, plt.figtext(0.02, 0.02, stats_text, fontsize=10,
bbox=dict(facecolor='white', alpha=0.8)) bbox=dict(facecolor='white', alpha=0.8))