更新nvidia docker命令

This commit is contained in:
龙澳 2024-12-29 16:00:47 +08:00
parent f08584d13a
commit 80ccd9784a
3 changed files with 23 additions and 24 deletions

View File

@ -10,7 +10,6 @@ pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
## TODO
- 过滤算法需要更新
- 合并obj影像需要更新
- command_runner中rerun需要更新
- grid要动态分割大小
- 任务队列

View File

@ -177,23 +177,23 @@ class ImagePreprocessor:
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "3-Isolated Points")
# 过滤密集点
previous_points = self.gps_points.copy()
self.logger.info(
f"开始过滤密集点(网格大小: {self.config.filter_grid_size}, "
f"距离阈值: {self.config.filter_dense_distance_threshold})"
)
self.gps_points = filter.filter_dense_points(
self.gps_points,
grid_size=self.config.filter_grid_size,
distance_threshold=self.config.filter_dense_distance_threshold,
time_threshold=self.config.filter_time_threshold,
)
self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
# # 过滤密集点
# previous_points = self.gps_points.copy()
# self.logger.info(
# f"开始过滤密集点(网格大小: {self.config.filter_grid_size}, "
# f"距离阈值: {self.config.filter_dense_distance_threshold})"
# )
# self.gps_points = filter.filter_dense_points(
# self.gps_points,
# grid_size=self.config.filter_grid_size,
# distance_threshold=self.config.filter_dense_distance_threshold,
# time_threshold=self.config.filter_time_threshold,
# )
# self.logger.info(f"密集点过滤后剩余 {len(self.gps_points)} 个GPS点")
# 可视化密集点过滤结果
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "4-Dense Points")
# # 可视化密集点过滤结果
# self.visualizer.visualize_filter_step(
# self.gps_points, previous_points, "4-Dense Points")
return self.gps_points
@ -253,7 +253,7 @@ class ImagePreprocessor:
self.extract_gps()
self.cluster()
# self.filter_time_group_overlap()
# self.filter_points()
self.filter_points()
grid_points = self.divide_grids()
self.copy_images(grid_points)
self.logger.info("预处理任务完成")
@ -270,8 +270,8 @@ class ImagePreprocessor:
if __name__ == "__main__":
# 创建配置
config = PreprocessConfig(
image_dir=r"E:\datasets\UAV\1009\project\images",
output_dir=r"G:\ODM_output\1009",
image_dir=r"E:\datasets\UAV\1815\images",
output_dir=r"G:\ODM_output\1815",
cluster_eps=0.01,
cluster_min_samples=5,
@ -287,8 +287,8 @@ if __name__ == "__main__":
filter_dense_distance_threshold=10,
filter_time_threshold=timedelta(minutes=5),
grid_size=300,
grid_overlap=0.03,
grid_size=500,
grid_overlap=0.05,
mode="重建模式",

View File

@ -27,7 +27,7 @@ class ODMProcessMonitor:
# 构建Docker命令
grid_dir = grid_dir[0].lower()+grid_dir[1:].replace('\\', '/')
docker_command = (
f"docker run -ti --rm "
f"docker run --gpus all -ti --rm "
f"-v {grid_dir}:/datasets "
f"opendronemap/odm "
f"--project-path /datasets project "