obj到osgb的坐标系变换

This commit is contained in:
weixin_46229132 2025-02-15 14:53:02 +08:00
parent d05f278d79
commit 86940bd1b9
4 changed files with 89 additions and 73 deletions

View File

@ -1,6 +1,6 @@
import argparse import argparse
from datetime import timedelta from datetime import timedelta
from odm_preprocess import PreprocessConfig, ImagePreprocessor from odm_preprocess_fast import PreprocessConfig, ImagePreprocessor
def parse_args(): def parse_args():
parser = argparse.ArgumentParser(description='ODM预处理工具') parser = argparse.ArgumentParser(description='ODM预处理工具')

View File

@ -265,13 +265,13 @@ class ImagePreprocessor:
merger = MergeObj(self.config.output_dir) merger = MergeObj(self.config.output_dir)
merger.merge_grid_obj(grid_points, translations) merger.merge_grid_obj(grid_points, translations)
def convert_obj(self, grid_points: Dict[tuple, pd.DataFrame], center_lat: float, center_lon: float): def convert_obj(self, grid_points: Dict[tuple, pd.DataFrame]):
"""转换OBJ模型""" """转换OBJ模型"""
self.logger.info("开始转换OBJ模型") self.logger.info("开始转换OBJ模型")
converter = ConvertOBJ(self.config.output_dir, center_lat, center_lon) converter = ConvertOBJ(self.config.output_dir)
converter.convert_grid_obj(grid_points) converter.convert_grid_obj(grid_points)
def post_process(self, successful_grid_points: Dict[tuple, pd.DataFrame], grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple], center_lat: float, center_lon: float): def post_process(self, successful_grid_points: Dict[tuple, pd.DataFrame], grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
"""后处理:合并或复制处理结果""" """后处理:合并或复制处理结果"""
if len(successful_grid_points) < len(grid_points): if len(successful_grid_points) < len(grid_points):
self.logger.warning( self.logger.warning(
@ -284,12 +284,12 @@ class ImagePreprocessor:
elif self.config.mode == "三维模式": elif self.config.mode == "三维模式":
# self.merge_ply(successful_grid_points) # self.merge_ply(successful_grid_points)
# self.merge_obj(successful_grid_points, translations) # self.merge_obj(successful_grid_points, translations)
self.convert_obj(successful_grid_points, center_lat, center_lon) self.convert_obj(successful_grid_points)
else: else:
self.merge_tif(successful_grid_points, self.config.produce_dem) self.merge_tif(successful_grid_points, self.config.produce_dem)
# self.merge_ply(successful_grid_points) # self.merge_ply(successful_grid_points)
# self.merge_obj(successful_grid_points, translations) # self.merge_obj(successful_grid_points, translations)
self.convert_obj(successful_grid_points, center_lat, center_lon) self.convert_obj(successful_grid_points)
def process(self): def process(self):
"""执行完整的预处理流程""" """执行完整的预处理流程"""
@ -297,9 +297,6 @@ class ImagePreprocessor:
self.extract_gps() self.extract_gps()
self.cluster() self.cluster()
self.filter_isolated_points() self.filter_isolated_points()
self.filter_time_group_overlap()
# self.filter_alternate_images()
center_lat, center_lon = self.calculate_center_coordinates()
grid_points, translations = self.divide_grids() grid_points, translations = self.divide_grids()
self.copy_images(grid_points) self.copy_images(grid_points)
self.logger.info("预处理任务完成") self.logger.info("预处理任务完成")
@ -308,7 +305,7 @@ class ImagePreprocessor:
grid_points, self.config.produce_dem) grid_points, self.config.produce_dem)
self.post_process(successful_grid_points, self.post_process(successful_grid_points,
grid_points, translations, center_lat, center_lon) grid_points, translations)
except Exception as e: except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True) self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)

View File

@ -265,13 +265,13 @@ class ImagePreprocessor:
merger = MergeObj(self.config.output_dir) merger = MergeObj(self.config.output_dir)
merger.merge_grid_obj(grid_points, translations) merger.merge_grid_obj(grid_points, translations)
def convert_obj(self, grid_points: Dict[tuple, pd.DataFrame], center_lat: float, center_lon: float): def convert_obj(self, grid_points: Dict[tuple, pd.DataFrame]):
"""转换OBJ模型""" """转换OBJ模型"""
self.logger.info("开始转换OBJ模型") self.logger.info("开始转换OBJ模型")
converter = ConvertOBJ(self.config.output_dir, center_lat, center_lon) converter = ConvertOBJ(self.config.output_dir)
converter.convert_grid_obj(grid_points) converter.convert_grid_obj(grid_points)
def post_process(self, successful_grid_points: Dict[tuple, pd.DataFrame], grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple], center_lat: float, center_lon: float): def post_process(self, successful_grid_points: Dict[tuple, pd.DataFrame], grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
"""后处理:合并或复制处理结果""" """后处理:合并或复制处理结果"""
if len(successful_grid_points) < len(grid_points): if len(successful_grid_points) < len(grid_points):
self.logger.warning( self.logger.warning(
@ -284,12 +284,12 @@ class ImagePreprocessor:
elif self.config.mode == "三维模式": elif self.config.mode == "三维模式":
# self.merge_ply(successful_grid_points) # self.merge_ply(successful_grid_points)
# self.merge_obj(successful_grid_points, translations) # self.merge_obj(successful_grid_points, translations)
self.convert_obj(successful_grid_points, center_lat, center_lon) self.convert_obj(successful_grid_points)
else: else:
self.merge_tif(successful_grid_points, self.config.produce_dem) self.merge_tif(successful_grid_points, self.config.produce_dem)
# self.merge_ply(successful_grid_points) # self.merge_ply(successful_grid_points)
# self.merge_obj(successful_grid_points, translations) # self.merge_obj(successful_grid_points, translations)
self.convert_obj(successful_grid_points, center_lat, center_lon) self.convert_obj(successful_grid_points)
def process(self): def process(self):
"""执行完整的预处理流程""" """执行完整的预处理流程"""
@ -297,9 +297,6 @@ class ImagePreprocessor:
self.extract_gps() self.extract_gps()
self.cluster() self.cluster()
self.filter_isolated_points() self.filter_isolated_points()
self.filter_time_group_overlap()
center_lat, center_lon = self.calculate_center_coordinates()
# self.filter_alternate_images()
grid_points, translations = self.divide_grids() grid_points, translations = self.divide_grids()
# self.copy_images(grid_points) # self.copy_images(grid_points)
# self.logger.info("预处理任务完成") # self.logger.info("预处理任务完成")
@ -308,7 +305,7 @@ class ImagePreprocessor:
# grid_points, self.config.produce_dem) # grid_points, self.config.produce_dem)
successful_grid_points = grid_points successful_grid_points = grid_points
self.post_process(successful_grid_points, self.post_process(successful_grid_points,
grid_points, translations, center_lat, center_lon) grid_points, translations)
except Exception as e: except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True) self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)

View File

@ -4,13 +4,12 @@ import json
import shutil import shutil
import logging import logging
from pyproj import Transformer from pyproj import Transformer
import cv2
class ConvertOBJ: class ConvertOBJ:
def __init__(self, output_dir: str, center_lat: float, center_lon: float): def __init__(self, output_dir: str):
self.output_dir = output_dir self.output_dir = output_dir
self.center_lat = center_lat
self.center_lon = center_lon
# 用于存储所有grid的UTM范围 # 用于存储所有grid的UTM范围
self.min_east = float('inf') self.min_east = float('inf')
self.min_north = float('inf') self.min_north = float('inf')
@ -59,25 +58,24 @@ class ConvertOBJ:
grid_name = f"grid_{grid_id[0]}_{grid_id[1]}" grid_name = f"grid_{grid_id[0]}_{grid_id[1]}"
project_dir = os.path.join(self.output_dir, grid_name, "project") project_dir = os.path.join(self.output_dir, grid_name, "project")
texturing_dir = os.path.join(project_dir, "odm_texturing") texturing_dir = os.path.join(project_dir, "odm_texturing")
texturing_dst_dir = os.path.join(project_dir, "odm_texturing_dst")
opensfm_dir = os.path.join(project_dir, "opensfm") opensfm_dir = os.path.join(project_dir, "opensfm")
obj_file = os.path.join(texturing_dir, "odm_textured_model_geo.obj")
log_file = os.path.join( log_file = os.path.join(
project_dir, "odm_orthophoto", "odm_orthophoto_log.txt") project_dir, "odm_orthophoto", "odm_orthophoto_log.txt")
if not os.path.exists(obj_file): os.makedirs(texturing_dst_dir, exist_ok=True)
raise FileNotFoundError(f"找不到OBJ文件: {obj_file}")
# 2. 读取UTM偏移量修改obj文件顶点坐标 # 2. 在新文件夹下利用UTM偏移量修改obj文件顶点坐标纹理文件下采样
utm_offset = self.read_utm_offset(log_file) utm_offset = self.read_utm_offset(log_file)
modified_obj = self.modify_obj_coordinates( modified_obj = self.modify_obj_coordinates(
obj_file, utm_offset) texturing_dir, texturing_dst_dir, utm_offset)
self.downsample_texture(texturing_dir, texturing_dst_dir)
# 3. 执行格式转换 # 3. 执行格式转换
self.logger.info(f"开始转换网格 {grid_id} 的OBJ文件") self.logger.info(f"开始转换网格 {grid_id} 的OBJ文件")
output_osgb = os.path.join(texturing_dir, "Tile.osgb") output_osgb = os.path.join(texturing_dst_dir, "Tile.osgb")
cmd = ( cmd = (
f"osgconv {modified_obj} {output_osgb} " f"osgconv {modified_obj} {output_osgb} "
f"--compressed --smooth --fix-transparency " f"--compressed --smooth --fix-transparency "
# f"-o -90-1,0,0"
) )
self.logger.info(f"执行osgconv命令{cmd}") self.logger.info(f"执行osgconv命令{cmd}")
@ -86,63 +84,33 @@ class ConvertOBJ:
except subprocess.CalledProcessError as e: except subprocess.CalledProcessError as e:
raise RuntimeError(f"OSGB转换失败: {str(e)}") raise RuntimeError(f"OSGB转换失败: {str(e)}")
# 4. 读取地理信息 # 4. 读取地理信息,计算中心点坐标
ref_lla_file = os.path.join(opensfm_dir, "reference_lla.json") ref_lla_file = os.path.join(opensfm_dir, "reference_lla.json")
with open(ref_lla_file, 'r') as f: with open(ref_lla_file, 'r') as f:
ref_lla = json.load(f) ref_lla = json.load(f)
# 5. 创建OSGB目录结构 # 5. 创建OSGB目录结构,复制文件
osgb_base_dir = os.path.join(self.output_dir, "osgb") osgb_base_dir = os.path.join(self.output_dir, "osgb")
data_dir = os.path.join(osgb_base_dir, "Data") data_dir = os.path.join(osgb_base_dir, "Data")
tile_dir = os.path.join(data_dir, f"Tile_{grid_id[0]}_{grid_id[1]}") tile_dir = os.path.join(data_dir, f"Tile_{grid_id[0]}_{grid_id[1]}")
os.makedirs(tile_dir, exist_ok=True) os.makedirs(tile_dir, exist_ok=True)
# 5. 复制OSGB文件
target_osgb = os.path.join( target_osgb = os.path.join(
tile_dir, f"Tile_{grid_id[0]}_{grid_id[1]}.osgb") tile_dir, f"Tile_{grid_id[0]}_{grid_id[1]}.osgb")
shutil.copy2(output_osgb, target_osgb) shutil.copy2(output_osgb, target_osgb)
# 计算当前网格的边界框 return ref_lla
grid_data = grid_points[grid_id]
# 假设grid_data是一个列表每个元素都是包含lat和lon的字典
lats = [point['lat'] for point in grid_data]
lons = [point['lon'] for point in grid_data]
min_lat = min(lats)
max_lat = max(lats)
min_lon = min(lons)
max_lon = max(lons)
tile_info = {
'id': f"{grid_id[0]}_{grid_id[1]}",
'bounds': {
'min_lat': min_lat,
'max_lat': max_lat,
'min_lon': min_lon,
'max_lon': max_lon
},
}
return tile_info
def _calculate_distance(self, lat1, lon1, lat2, lon2):
"""计算两点间的距离(米)"""
from math import sin, cos, sqrt, atan2, radians
R = 6371000 # 地球半径(米)
lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2])
dlat = lat2 - lat1
dlon = lon2 - lon1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
return R * c
def _create_merged_metadata(self, tile_infos): def _create_merged_metadata(self, tile_infos):
"""创建合并后的metadata.xml文件""" """创建合并后的metadata.xml文件"""
center_lon = sum(ref_lla['longitude']
for ref_lla in tile_infos) / len(tile_infos)
center_lat = sum(ref_lla['latitude']
for ref_lla in tile_infos) / len(tile_infos)
metadata_content = f"""<?xml version="1.0" encoding="utf-8"?> metadata_content = f"""<?xml version="1.0" encoding="utf-8"?>
<ModelMetadata version="1"> <ModelMetadata version="1">
<SRS>EPSG:4326</SRS> <SRS>EPSG:4326</SRS>
<SRSOrigin>{self.center_lon},{self.center_lat},0.000000</SRSOrigin> <SRSOrigin>{center_lon},{center_lat},0.000000</SRSOrigin>
<Texture> <Texture>
<ColorSource>Visible</ColorSource> <ColorSource>Visible</ColorSource>
</Texture> </Texture>
@ -174,13 +142,19 @@ class ConvertOBJ:
self.logger.error(f"读取UTM偏移量时发生错误: {str(e)}") self.logger.error(f"读取UTM偏移量时发生错误: {str(e)}")
raise raise
def modify_obj_coordinates(self, obj_file: str, utm_offset: tuple) -> str: def modify_obj_coordinates(self, texturing_dir: str, texturing_dst_dir: str, utm_offset: tuple) -> str:
"""修改obj文件中的顶点坐标使用相对坐标系""" """修改obj文件中的顶点坐标使用相对坐标系"""
obj_file = os.path.join(texturing_dir, "odm_textured_model_geo.obj")
obj_dst_file = os.path.join(
texturing_dst_dir, "odm_textured_model_geo_utm.obj")
if not os.path.exists(obj_file):
raise FileNotFoundError(f"找不到OBJ文件: {obj_file}")
shutil.copy2(os.path.join(texturing_dir, "odm_textured_model_geo.mtl"),
os.path.join(texturing_dst_dir, "odm_textured_model_geo.mtl"))
east_offset, north_offset = utm_offset east_offset, north_offset = utm_offset
output_obj = obj_file.replace('.obj', '_utm.obj')
try: try:
with open(obj_file, 'r') as f_in, open(output_obj, 'w') as f_out: with open(obj_file, 'r') as f_in, open(obj_dst_file, 'w') as f_out:
for line in f_in: for line in f_in:
if line.startswith('v '): if line.startswith('v '):
# 处理顶点坐标行 # 处理顶点坐标行
@ -189,12 +163,60 @@ class ConvertOBJ:
x = float(parts[1]) + (east_offset - self.min_east) x = float(parts[1]) + (east_offset - self.min_east)
y = float(parts[2]) + (north_offset - self.min_north) y = float(parts[2]) + (north_offset - self.min_north)
z = float(parts[3]) z = float(parts[3])
f_out.write(f'v {x:.6f} {z:.6f} {y:.6f}\n') f_out.write(f'v {x:.6f} {z:.6f} {-y:.6f}\n')
else: else:
# 其他行直接写入 # 其他行直接写入
f_out.write(line) f_out.write(line)
return output_obj return obj_dst_file
except Exception as e: except Exception as e:
self.logger.error(f"修改obj坐标时发生错误: {str(e)}") self.logger.error(f"修改obj坐标时发生错误: {str(e)}")
raise raise
def downsample_texture(self, src_dir: str, dst_dir: str):
"""复制并重命名纹理文件对大于100MB的文件进行多次下采样直到文件小于100MB
Args:
src_dir: 源纹理目录
dst_dir: 目标纹理目录
"""
for file in os.listdir(src_dir):
if file.lower().endswith(('.png')):
src_path = os.path.join(src_dir, file)
dst_path = os.path.join(dst_dir, file)
# 检查文件大小(以字节为单位)
file_size = os.path.getsize(src_path)
if file_size <= 100 * 1024 * 1024: # 如果文件小于等于100MB直接复制
shutil.copy2(src_path, dst_path)
else:
# 文件大于100MB进行下采样
img = cv2.imread(src_path, cv2.IMREAD_UNCHANGED)
if_first_ds = True
while file_size > 100 * 1024 * 1024: # 大于100MB
self.logger.info(f"纹理文件 {file} 大于100MB进行下采样")
if if_first_ds:
# 计算新的尺寸长宽各变为1/4
new_size = (img.shape[1] // 4,
img.shape[0] // 4) # 逐步减小尺寸
# 使用双三次插值进行下采样
resized_img = cv2.resize(
img, new_size, interpolation=cv2.INTER_CUBIC)
if_first_ds = False
else:
# 计算新的尺寸长宽各变为1/2
new_size = (img.shape[1] // 2,
img.shape[0] // 2) # 逐步减小尺寸
# 使用双三次插值进行下采样
resized_img = cv2.resize(
img, new_size, interpolation=cv2.INTER_CUBIC)
# 更新文件路径为下采样后的路径
cv2.imwrite(dst_path, resized_img, [
cv2.IMWRITE_PNG_COMPRESSION, 9])
# 更新文件大小和图像
file_size = os.path.getsize(dst_path)
img = cv2.imread(dst_path, cv2.IMREAD_UNCHANGED)
self.logger.info(
f"下采样后文件大小: {file_size / (1024 * 1024):.2f} MB")