修改瓦片的偏移

This commit is contained in:
weixin_46229132 2025-02-06 19:01:19 +08:00
parent a3951c47d0
commit 971517c145
3 changed files with 137 additions and 28 deletions

View File

@ -298,8 +298,8 @@ class ImagePreprocessor:
self.cluster()
self.filter_isolated_points()
self.filter_time_group_overlap()
center_lat, center_lon = self.calculate_center_coordinates()
# self.filter_alternate_images()
center_lat, center_lon = self.calculate_center_coordinates()
grid_points, translations = self.divide_grids()
self.copy_images(grid_points)
self.logger.info("预处理任务完成")

View File

@ -4,10 +4,7 @@ from datetime import timedelta
from dataclasses import dataclass
from typing import Dict, Tuple
import psutil
import matplotlib.pyplot as plt
import pandas as pd
from tqdm import tqdm
from filter.cluster_filter import GPSCluster
from filter.time_group_overlap_filter import TimeGroupOverlapFilter
@ -20,6 +17,7 @@ from utils.visualizer import FilterVisualizer
from post_pro.merge_tif import MergeTif
from post_pro.merge_obj import MergeObj
from post_pro.merge_laz import MergePly
from post_pro.conv_obj import ConvertOBJ
@dataclass
@ -187,6 +185,28 @@ class ImagePreprocessor:
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "3-Time Group Overlap")
def calculate_center_coordinates(self):
"""计算剩余点的中心经纬度坐标"""
mean_lat = self.gps_points['lat'].mean()
mean_lon = self.gps_points['lon'].mean()
self.logger.info(f"区域中心坐标:纬度 {mean_lat:.6f}, 经度 {mean_lon:.6f}")
return mean_lat, mean_lon
def filter_alternate_images(self):
"""按时间顺序隔一个删一个图像来降低密度"""
previous_points = self.gps_points.copy()
# 按时间戳排序
self.gps_points = self.gps_points.sort_values('date')
# 保留索引为偶数的行(即隔一个保留一个)
self.gps_points = self.gps_points.iloc[::2].reset_index(drop=True)
self.visualizer.visualize_filter_step(
self.gps_points, previous_points, "4-Alternate Images")
self.logger.info(f"交替过滤后剩余 {len(self.gps_points)} 个点")
def divide_grids(self) -> Tuple[Dict[tuple, pd.DataFrame], Dict[tuple, tuple]]:
"""划分网格
Returns:
@ -220,7 +240,7 @@ class ImagePreprocessor:
os.makedirs(output_dir, exist_ok=True)
for point in tqdm(points, desc=f"复制网格 ({grid_id[0]},{grid_id[1]}) 的图像"):
for point in points:
src = os.path.join(self.config.image_dir, point["file"])
dst = os.path.join(output_dir, point["file"])
shutil.copy(src, dst)
@ -245,7 +265,13 @@ class ImagePreprocessor:
merger = MergeObj(self.config.output_dir)
merger.merge_grid_obj(grid_points, translations)
def post_process(self, successful_grid_points: Dict[tuple, pd.DataFrame], grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple]):
def convert_obj(self, grid_points: Dict[tuple, pd.DataFrame], center_lat: float, center_lon: float):
"""转换OBJ模型"""
self.logger.info("开始转换OBJ模型")
converter = ConvertOBJ(self.config.output_dir, center_lat, center_lon)
converter.convert_grid_obj(grid_points)
def post_process(self, successful_grid_points: Dict[tuple, pd.DataFrame], grid_points: Dict[tuple, pd.DataFrame], translations: Dict[tuple, tuple], center_lat: float, center_lon: float):
"""后处理:合并或复制处理结果"""
if len(successful_grid_points) < len(grid_points):
self.logger.warning(
@ -256,12 +282,14 @@ class ImagePreprocessor:
if self.config.mode == "快拼模式":
self.merge_tif(successful_grid_points, self.config.produce_dem)
elif self.config.mode == "三维模式":
self.merge_ply(successful_grid_points)
self.merge_obj(successful_grid_points, translations)
# self.merge_ply(successful_grid_points)
# self.merge_obj(successful_grid_points, translations)
self.convert_obj(successful_grid_points, center_lat, center_lon)
else:
self.merge_tif(successful_grid_points, self.config.produce_dem)
self.merge_ply(successful_grid_points)
self.merge_obj(successful_grid_points, translations)
# self.merge_ply(successful_grid_points)
# self.merge_obj(successful_grid_points, translations)
self.convert_obj(successful_grid_points, center_lat, center_lon)
def process(self):
"""执行完整的预处理流程"""
@ -270,15 +298,17 @@ class ImagePreprocessor:
self.cluster()
self.filter_isolated_points()
self.filter_time_group_overlap()
center_lat, center_lon = self.calculate_center_coordinates()
# self.filter_alternate_images()
grid_points, translations = self.divide_grids()
# self.copy_images(grid_points)
self.logger.info("预处理任务完成")
# self.logger.info("预处理任务完成")
# successful_grid_points = self.odm_monitor.process_all_grids(
# grid_points, self.config.produce_dem)
successful_grid_points = grid_points
self.post_process(successful_grid_points,
grid_points, translations)
grid_points, translations, center_lat, center_lon)
except Exception as e:
self.logger.error(f"处理过程中发生错误: {str(e)}", exc_info=True)

View File

@ -13,17 +13,19 @@ class ConvertOBJ:
def convert_grid_obj(self, grid_points):
"""转换每个网格的OBJ文件为OSGB格式"""
os.makedirs(os.path.join(self.output_dir, "osgb"), exist_ok=True)
os.makedirs(os.path.join(self.output_dir, "osgb", "Data"), exist_ok=True)
tile_infos = []
for grid_id in grid_points.keys():
try:
self._convert_single_grid(grid_id)
tile_info = self._convert_single_grid(grid_id, grid_points)
tile_infos.append(tile_info)
except Exception as e:
self.logger.error(f"网格 {grid_id} 转换失败: {str(e)}")
# 在所有网格处理完成后创建总的metadata.xml
self._create_merged_metadata()
self._create_merged_metadata(tile_infos)
def _convert_single_grid(self, grid_id):
def _convert_single_grid(self, grid_id, grid_points):
"""转换单个网格的OBJ文件"""
# 1. 构建相关路径
grid_name = f"grid_{grid_id[0]}_{grid_id[1]}"
@ -40,9 +42,24 @@ class ConvertOBJ:
self.logger.info(f"开始转换网格 {grid_id} 的OBJ文件")
output_osgb = os.path.join(texturing_dir, "Tile.osgb")
# 计算当前网格相对于中心点的偏移
grid_data = grid_points[grid_id]
lats = [point['lat'] for point in grid_data]
lons = [point['lon'] for point in grid_data]
min_lat = min(lats)
min_lon = min(lons)
# 计算偏移量(米)
offset_x = self._calculate_distance(self.center_lat, self.center_lon, self.center_lat, min_lon)
offset_y = self._calculate_distance(self.center_lat, self.center_lon, min_lat, self.center_lon)
# 修改转换命令,使用正确的参数格式
cmd = (
f"osgconv --compressed --smooth --fix-transparency -o 0,1,0-0,0,-1 "
f"{obj_file} {output_osgb}"
f"osgconv {obj_file} {output_osgb} "
f"--compressed --smooth --fix-transparency "
f"-t {offset_x},{offset_y},0 " # 使用 -t 参数进行平移
f"-o 0,1,0-0,0,-1"
)
try:
@ -65,16 +82,78 @@ class ConvertOBJ:
target_osgb = os.path.join(tile_dir, f"Tile_{grid_id[0]}_{grid_id[1]}.osgb")
shutil.copy2(output_osgb, target_osgb)
self.logger.info(f"网格 {grid_id} 转换完成")
# 计算当前网格的边界框
grid_data = grid_points[grid_id]
# 假设grid_data是一个列表每个元素都是包含lat和lon的字典
lats = [point['lat'] for point in grid_data]
lons = [point['lon'] for point in grid_data]
def _create_merged_metadata(self):
min_lat = min(lats)
max_lat = max(lats)
min_lon = min(lons)
max_lon = max(lons)
# 计算相对于中心点的偏移
offset_x = self._calculate_distance(self.center_lat, self.center_lon, self.center_lat, min_lon)
offset_y = self._calculate_distance(self.center_lat, self.center_lon, min_lat, self.center_lon)
tile_info = {
'id': f"{grid_id[0]}_{grid_id[1]}",
'bounds': {
'min_lat': min_lat,
'max_lat': max_lat,
'min_lon': min_lon,
'max_lon': max_lon
},
'offset': (offset_x, offset_y)
}
return tile_info
def _calculate_distance(self, lat1, lon1, lat2, lon2):
"""计算两点间的距离(米)"""
from math import sin, cos, sqrt, atan2, radians
R = 6371000 # 地球半径(米)
lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2])
dlat = lat2 - lat1
dlon = lon2 - lon1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
return R * c
def _create_merged_metadata(self, tile_infos):
"""创建合并后的metadata.xml文件"""
metadata_content = f"""<?xml version="1.0" encoding="utf-8"?>
<ModelMetadata version="1">
<!--Spatial Reference System-->
<SRS>EPSG:4326</SRS>
<!--Origin in Spatial Reference System-->
<SRSOrigin>{self.center_lon},{self.center_lat},0.000000</SRSOrigin>
<TileStructure>
<RootNode>
<BoundingBox>
<MinLat>{min([t['bounds']['min_lat'] for t in tile_infos])}</MinLat>
<MaxLat>{max([t['bounds']['max_lat'] for t in tile_infos])}</MaxLat>
<MinLon>{min([t['bounds']['min_lon'] for t in tile_infos])}</MinLon>
<MaxLon>{max([t['bounds']['max_lon'] for t in tile_infos])}</MaxLon>
</BoundingBox>
<Tiles>"""
for tile in tile_infos:
metadata_content += f"""
<Tile id="{tile['id']}">
<Offset>{tile['offset'][0]},{tile['offset'][1]},0</Offset>
<BoundingBox>
<MinLat>{tile['bounds']['min_lat']}</MinLat>
<MaxLat>{tile['bounds']['max_lat']}</MaxLat>
<MinLon>{tile['bounds']['min_lon']}</MinLon>
<MaxLon>{tile['bounds']['max_lon']}</MaxLon>
</BoundingBox>
</Tile>"""
metadata_content += """
</Tiles>
</RootNode>
</TileStructure>
<Texture>
<ColorSource>Visible</ColorSource>
</Texture>